

1 Article

2

The discovery of synthetic proteolytic peptide

3 **Rina Nakamura** ^{1,2}, **Aya Kojima** ¹, **Motomi Konishi**¹, **Masanari Taniguchi**¹, **Yusuke Hatakawa**¹ and
4 **Toshifumi Akizawa** ^{1,2,*}5 ¹ Laboratory of Clinical Analytical Chemistry, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1
6 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan; momizit0510@gmail.com7 ² O-Force Co., Ltd., 2-12-31 Shodai-Nakamati, Hirakata, Osaka 573-1152, Japan; momizit0510@gmail.com

8 * Correspondence: momizit0510@gmail.com; Tel.: +81-80-6132-4938

9 **Abstract:** After screening nearly 1000 synthetic peptides, a synthetic peptide termed JAL-AK22
10 (KYEGHWYPEKPYKGSGFRCIHI) derived from the BoxA domain in Tob1 protein was found to
11 activate both unfolded and folded proMMP-7. In addition, JAL-AK22 showed auto-proteolytic
12 activity. Interestingly, the smaller derivative of JAL-AK22 termed JAL-TA9 (YKGSGFRMI) also
13 possessed auto-proteolytic activity and cleaved 2 fragment peptides (MMP18-33 and MMP18-40)
14 derived from the prodomain of proMMP-7 under physiological conditions. These proteolytic
15 activities were inhibited by AEBSF, a serine protease inhibitor. Our results demonstrate that a small
16 synthetic peptide consisting of only 9 amino acids has serine protease-like activity and activates
17 proMMP-7 by cleaving the prodomain region. We thus propose calling small peptides possessing
18 with protease-like activity **Catalytides** (catalytic peptides). We expect that our findings will
19 stimulate the development of novel Catalytides and related applications.20 **Keywords:** Catalytide, serine protease-like peptide, Tob1

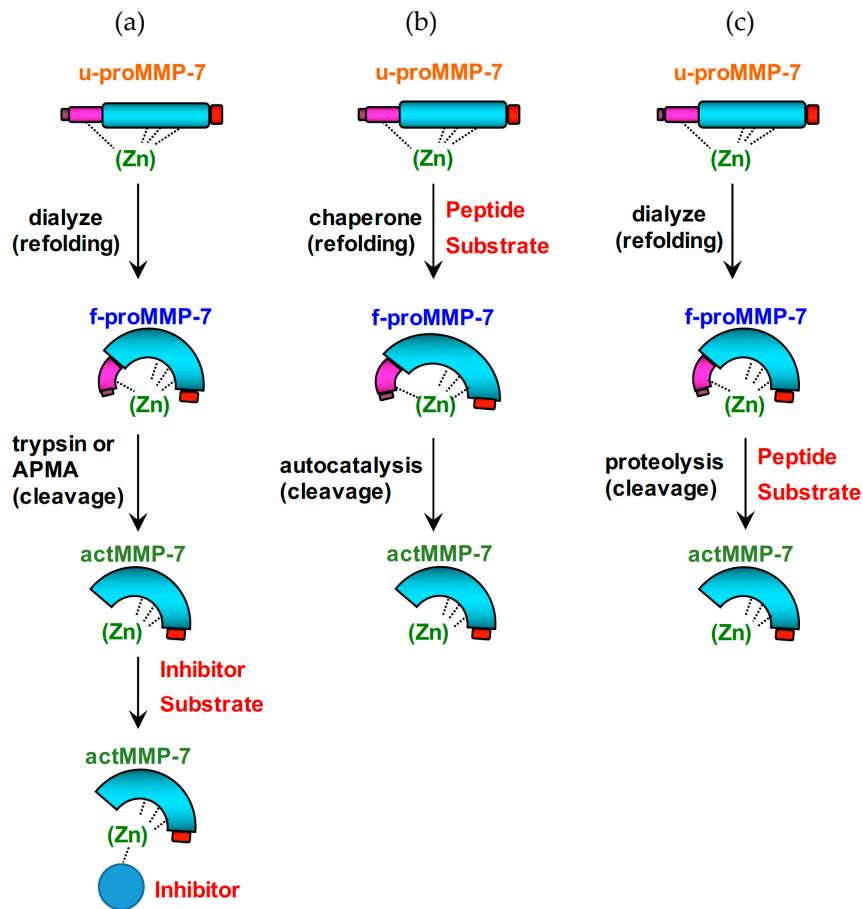
21

22

1. Introduction

23 We reported the microplate assay method for screening the possible inhibitors of MMPs
24 (MMPIs), which are thought to be critically involved in oncogenesis, using with activated
25 recombinant matrix metalloproteinases (actMMPS) and a fluorescence quenching substrate (3163-v)
26 [1-3]. To prepare activated MMP-7 (actMMP-7) from unfold proMMP-7 (u-proMMP-7) expressed in
27 *Escherichia coli*, refolding step and proteolytic cleavage of prodomain were necessary. The **activity of**
28 actMMP-7 was monitored with fluorescence intensity produced from 3163-v; thus, the fluorescence
29 intensity reflects the level of cleavage and thereby u-proMMP-7 activation (**Scheme 1a**). We thought
30 that the chaperone-like peptide could be screened by the microplate assay method. After screening
31 nearly 1,000 peptides, some peptides were found to activate u-proMMP-7 (**Scheme 1b**). The most
32 potent peptide is termed JAL-AK22 (KYEGHWYPEKPYKGSGFRCIHI), comprising 22 amino acids
33 derived from the BoxA domain in the Tob1 protein (**Figure S1a**), a membrane-type tyrosine kinase,
34 was found to activate u-proMMP-7, in contrast to the initial expectation (data not shown). The
35 protein encoded by Tob1 is a member of the Tob/BTG family consisted of BTG1, BTG2/Tis21/PC3,
36 ANA/BTG3, BTG4/PC3B and Tob2. **The N-terminus region of Tob/BTG family** is a highly conserved
37 homology domain that contains BoxA, B and C. According to recent reports, these proteins display
38 antiproliferative activity in a variety of cell types and are involved in the regulation of tumorigenesis
39 [4-6]. However, the role of the BoxA domain of Tob/BTG family protein is still unclear, and there
40 have been no reports of protease activity. Enzymes are generally macromolecular proteins, acting
41 alone or in large complexes. To the best of our knowledge, protease-like activity has never been
42 reported in very small synthetic peptides. In this study, we describe the identification of a small
43 protease-like peptide termed as Catalytide.

44

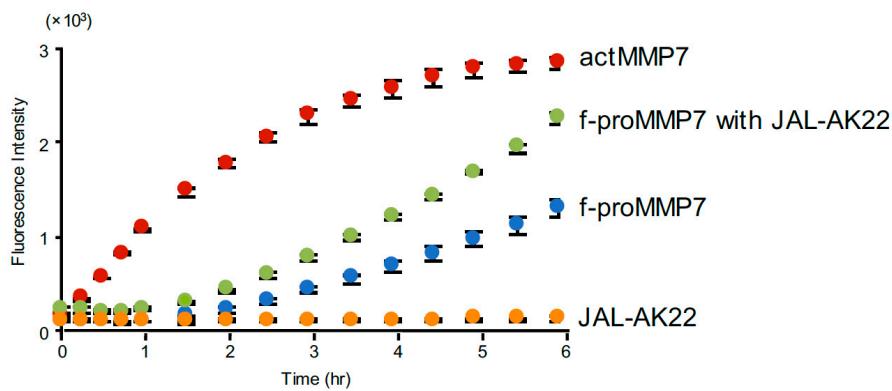

45

46 **2. Results**47 *2.1. Screening of proteolytic peptide, JAL-AK22*48 *2.1.1. Screening of proteolytic peptide*

49 Our first aim of this study was to find the chaperone-like peptide, which could affect the
50 refolding of u-proMMP-7 [7]. The reaction mixture containing u-proMMP-7 and fluorescence
51 substrate (3163-v) was incubated at 37 °C in assay buffer. The fluorescence intensity was measured
52 with excitation at 320 nm and emission at 390 nm (Scheme 1b). After screening nearly 1000 synthetic
53 peptides in our peptide library, the synthetic peptide derived from BoxA region of Tob1 protein
54 termed JAL-AK22 (KYEGHWYPEKPYKGSGFRCIHI) (Figure S1a) was found as the activator of
55 u-proMMP-7 (data not shown). However, it was unclear whether JAL-AK22 affected the refolding
56 (Scheme 1b) or cleavage (Scheme 1c) of the prodomain of proMMP-7. To clarify this question, we
57 next analyzed the effect of JAL-AK22 on the activation of folded proMMP-7 (f-proMMP-7), which
58 was prepared by renaturation of u-proMMP-7 (Scheme 1a). As shown in Figure 1, JAL-AK22
59 significantly enhanced the activation of f-proMMP-7 but slightly reduced the activity of preactivated
60 MMP-7 (actMMP-7) activated by trypsin (Scheme 1a). The f-proMMP-7 alone showed much slower
61 activation apparently due to spontaneous auto-catalysis. These results indicated that JAL-AK22
62 could activate f-proMMP-7 by proteolytic cleavage of proMMP-7 rather than refolding of
63 u-proMMP-7 [8].

64

65


66

67 **Scheme 1.** Screening and identification of proteolytic peptides (a) Screening of MMP
 68 inhibitor (b) Screening of chaperone-like peptide (c) Screening of proteolytic peptide

69

70

71

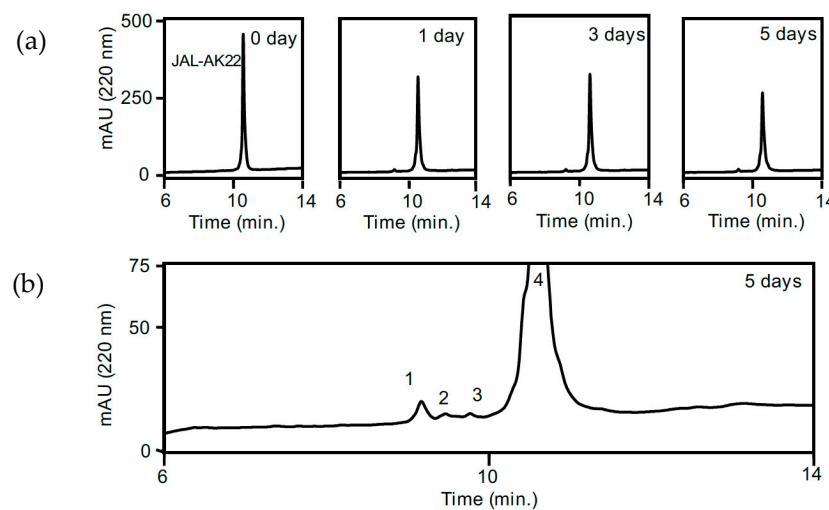

72

Figure 1. Activation of folded proMMP-7 by JAL-AK22

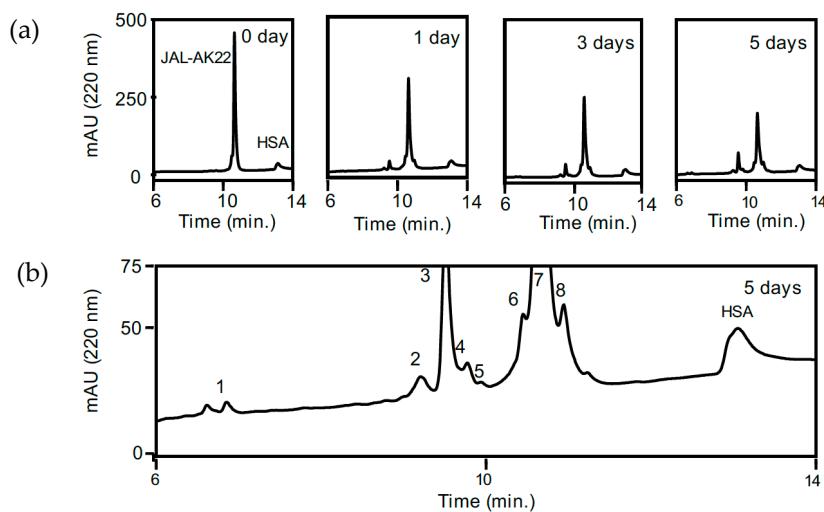
73

74 2.1.2. Auto-proteolytic activity

75 In a preliminary analysis of the reaction mixture described above, we noticed a decrease in the
 76 JAL-AK22 level after incubation and thus decided to examine its auto-proteolytic activity with or
 77 without human serum albumin (HSA). JAL-AK22 was incubated alone at 37 °C in PBS (pH 7.4),
 78 and the incubation mixture was analyzed by HPLC (Figure 2a). The original amount of JAL-AK22
 79 decreased in a time-dependent manner, strongly suggesting that JAL-AK22 has auto-proteolytic
 80 activity. The peaks (1-4) in the chromatogram that appeared after 5 days were collected (Figure 2b).
 81 By MS analyses, 7 kinds of fragment peptides derived from JAL-AK22 were identified in the reaction
 82 mixture (Table 1).

83

84 **Figure 2.** Identification of auto-proteolysis activity of JAL-AK22 (a) time dependent
 85 analysis (b) peak collection


86 **Table 1.** Identification of fragment peptides of JAL-AK22

Peak	Fragment	Theoretical MS	Experimental MS
1	KYEGHWYYPEKPYK	1723.84	1722.8665
1	KYEGHWYYPEKPYKGS	1867.89	1866.9345
2	KYEGHWYYPEKPYKGSGFR	2228.08	2228.1138
3	KYEGHWYYPEKPY	1595.74	1595.7560
4	EKPYKGSGFRC _U (YKGSGFRC _U IHI) I	2661.35	2661.3766
4	HWYPEKPYKGSGFRC _U (RC _U IH) IHI	2742.35	2742.3270
4	KYEGHWYYPEKPYKGSGFRC _U IHI (dimmer)	5386.64	5386.6256

87

88 On the other hand, 8 kinds of fragment peptides were identified in the reaction mixture
 89 including HSA (Figure 3 and Table 2). These data indicated that JAL-AK22 might possess the
 90 auto-proteolytic activity. Interestingly, the decreasing ratio of original JAL-AK22 was higher than
 91 that of JAL-AK22 alone (Figure S2). It suggests that the auto-proteolytic activity might be enhanced
 92 in the presence of HSA. The cleavage sites of JAL-AK22 in this reaction are summarized in Figure 11.

93 Taken together, we concluded that JAL-AK22 has proteolytic activity and could activate
 94 proMMP-7 through proteolytic removal of the prodomain region [6].

95 **Figure 3.** Identification of auto-proteolysis activity of JAL-AK22 with HSA (a) time
 96 dependent analysis (b) peak collection

97

98 **Table 2.** Identification of fragment peptides of JAL-AK22 with HSA

Peak	Fragment	Theoretical MS	Experimental MS
1	KYEGH	632.29	631.3216
2	KYEGHWYPEKPYK	1723.84	1722.9005
2	KYEGHWYPEKPYKGS	1867.89	1866.8650
3	KYEGHWYPEKPYKGSGFR	2228.08	2228.1402
4	KYEGHWYPEKPY	1595.74	1595.7788
4	YPEKPYKGSGFRC (SGFRC) I	2210.05	2210.1325
5	EKPYKGSGFRC (KPYKGSGFRCIHI) IHI	3136.64	3136.8076
6	HWYPEKPYKGSGFRC (RCIH) I	2742.35	2742.3695
7	YEGHWYPEKPYKGSGFRC (RC) I	2591.20	2591.3565
7	KYEGHWYPEKPYKGSGFRCIHI (dimmer)	5386.64	5386.7384
8	KYEGHWYPEKPYKGSGFRC (CIHI) IHI	3176.57	3176.6497

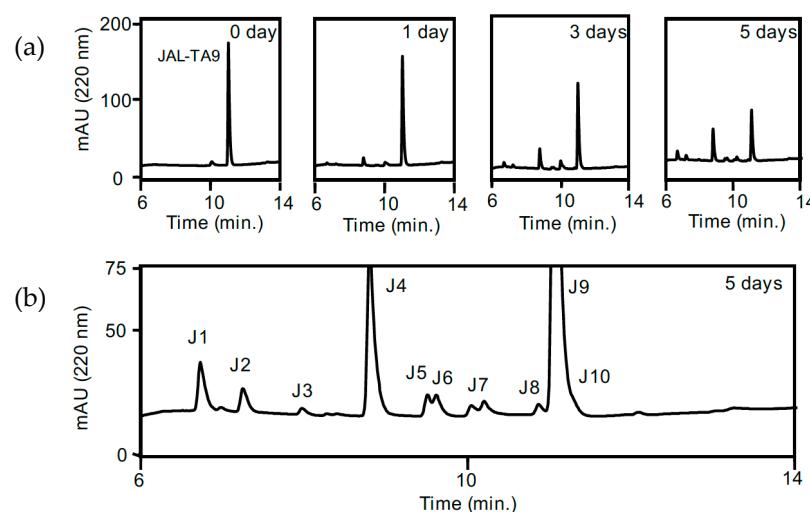
99

100

101

102

103 2.2. Identification of proteolytic peptide, JAL-TA9


104 2.2.1. Auto-proteolytic activity

105 MS analysis of JAL-AK22 indicated that the Cys residue containing fragment peptides
106 produced by auto-protolytic activity formed the homo/hetero dimers (Table 1 and 2). This reaction is
107 not suitable to identify the proteolytic activity by MS analysis, thus we planed to determine the
108 minimum sequence required for the auto-proteolytic activity. The additional 9 peptides were
109 synthesized and examined the auto-proteolytic activity in the same manner (Figure S2). JAL-TAK22
110 (KYEGHWYYPEKPYKGSGFRMIHI), substituted Cys residue to Met, showed the similar
111 auto-proteolytic activity to JAL-AK22. In addition, JAL-TAY11 (YKGSGFRMIHI) showed more
112 potent than JAL-AK22. The proteolytic activities of the shorter peptides comparison of JAL-TA9
113 (YKGSGFRMI) were low. As a result, a 9-mer peptide termed JAL-TA9 was found to show the
114 highest auto-proteolytic activity and further investigated for its proteolytic activity (Figure S3b).

115 The optimal reaction conditions for JAL-TA9 were analyzed by monitoring the
116 auto-proteolytic activity. JAL-TA9 showed potent auto-proteolytic activity between pH 7.0 and 7.5
117 in the presence of HSA in phosphate buffer (Figure S4a). Judging from the effects of various buffers
118 including PBS, Tris-HCl (pH 7.5), phosphate buffer (pH 7.5), assay buffer (pH 7.5) [1, 3], PBS was
119 selected for the following experiments (Figure S4b). Among the temperatures tested (4 °C, room
120 temperature, 37 °C and 70 °C), the maximum activity was observed at 37 °C in PBS (pH 7.4) (Figure
121 S4c).

122 JAL-TA9 (final conc., 0.2 mM) was incubated alone in PBS at 37 °C, and the reaction mixture
123 was analyzed for 5 days by HPLC. The level of JAL-TA9 was decreased in time dependent manner,
124 along with the formation of several peaks in the HPLC chromatogram (Figure 4a). On day 5, we
125 corrected the 10 peaks (J1 - J10) including JAL-TA9 (J9) (Figure 4b) and identified 8 peptides and 1
126 amino acid as derivatives from JAL-TA9 (Table 3).

127

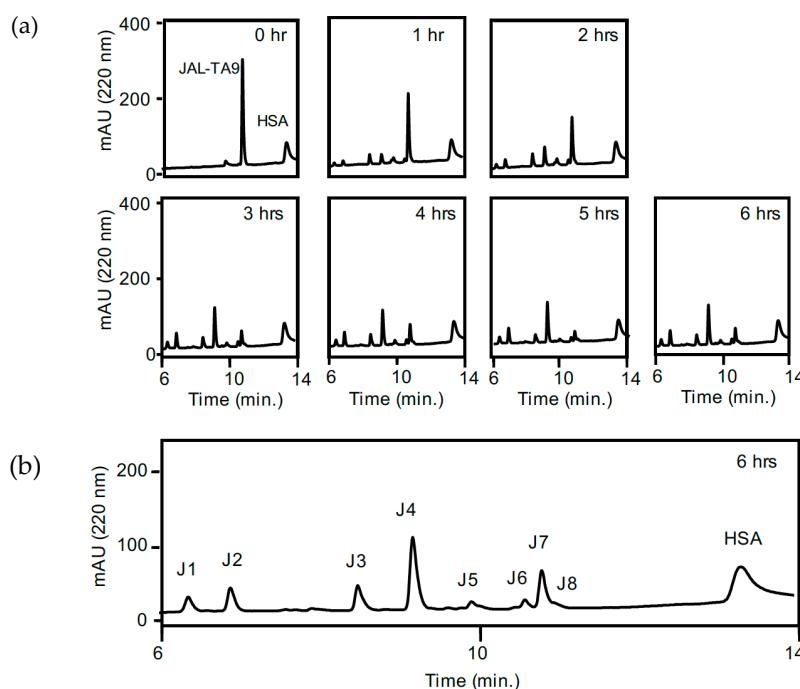
128

129 **Figure 4.** Identification of auto-proteolysis activity of JAL-TA9 (a) time dependent analysis

(b) peak collection

130

131


Table 3. Identification of fragment peptides of JAL-TA9

Peak	Fragment	Theoretical MS	Experimental MS
J1	YKGSG	510.24	510.2548
J2	Y	181.19	181.0511
J3	FR	321.18	321.1800
J4	YKGSGFR	813.41	813.4260
J5	YKGSGF	657.31	657.3236
J6	MI	262.14	262.1452
J7	YKGSGFRM	944.45	944.6563
J8	KGSGFRMI	894.47	894.4824
J9	YKGSGFRMI	1057.54	1057.5705
J10	FRMI	565.30	565.3011

132

133

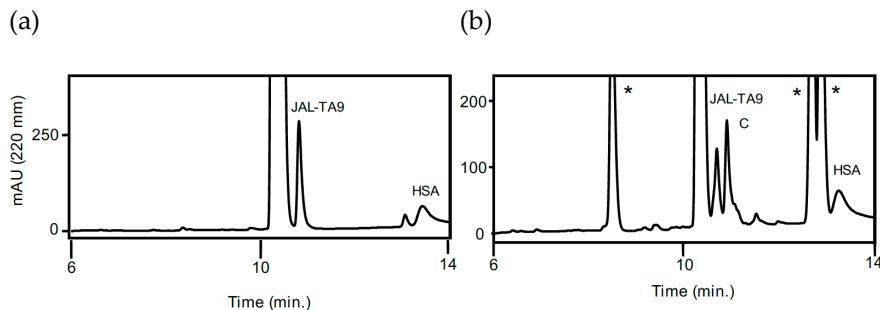
We next examined the auto-proteolytic activity of JAL-TA9 in the presence of HSA (final conc., 0.025 % w/v). The reaction mixture was analyzed every 1 hr for 6 hrs by HPLC (Figure 5a). As expected, similar to JAL-AK22, the auto-catalytic activity of JAL-TA9 was enhanced in presence of HSA (Figure S2b and c). The level of JAL-TA9 was decreased, along with the formation of several peaks in the HPLC chromatogram (Figure 5a). After 1 hr of incubation, the peak corresponding to JAL-TA9 had decreased and almost disappeared after 6 hrs, with the concomitant detection of several peaks in the chromatogram (Figure 5b). MS analysis revealed that the new peaks corresponded to new peptides derived from JAL-TA9 (Table 4). The cleavage sites of JAL-TA9 in the presence or absence of HSA are summarized in Figure 11. The specificity for these cleavage sites appeared to be less strict and could not be defined definitively.

143 **Figure 5.** Identification of auto-proteolytic activity of JAL-TA9 with HSA (a) time
144 dependent analysis (b) peak collection

145

146 **Table 4.** Identification of fragment peptides of JAL-TA9 with HSA

Peak	Fragment	Theoretical MS	Experimental MS
J1	YKGSG	510.24	510.2548
J2	RMI	148.24	418.2364
J3	KGSGF	494.25	494.2612
J4	YKGSGF	658.32	658.3178
J5	YKGSGFRM	944.45	944.4804
J6	KGSGFRMI	894.47	894.4902
J7	YKGSGFRMI	1057.54	1057.5651
J8	GFRMI	622.33	622.3900


147

148 Furthermore, we evaluated the auto-proteolytic activity of JAL-TA9 after filtration of the
149 reaction mixture to deny that these phenomena were due to the contamination of some bacteria or
150 another hydrolytic enzymes. The reaction mixture including HSA was filtered using MILLEX-GV
151 (Millipore, 0.22 μ m Filter Unit) and TERUMO Syringe (TERUMO, 26G, 1mL) to remove
152 contaminates and then analyzed by the same manner to the reaction mixture without filtration. The
153 chromatograms obtained after incubation for 1 day were the same to those obtained without
154 filtration (Figure S5). These data proved that the auto-proteolytic activity of JAL-TA9 was not due to
155 contamination of bacteria.

156 In the case of incubation with 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride
157 (AEBSF), a serine protease inhibitor, the fragment peptide produced by auto-proteolysis of JAL-TA9
158 was not appeared on the chromatogram (Figure 6). Peak C in Figure 6b was identified as a complex
159 with JAL-TA9 by MS/MS analysis (Figure 7). The peaks marked with a star (*) were not peptides.
160 These data clearly indicated that JAL-TA9 also possessed proteolytic activity and cleaved its own
161 sequence, suggesting that JAL-TA9 can act as a serine protease [9-11].

162

163

164

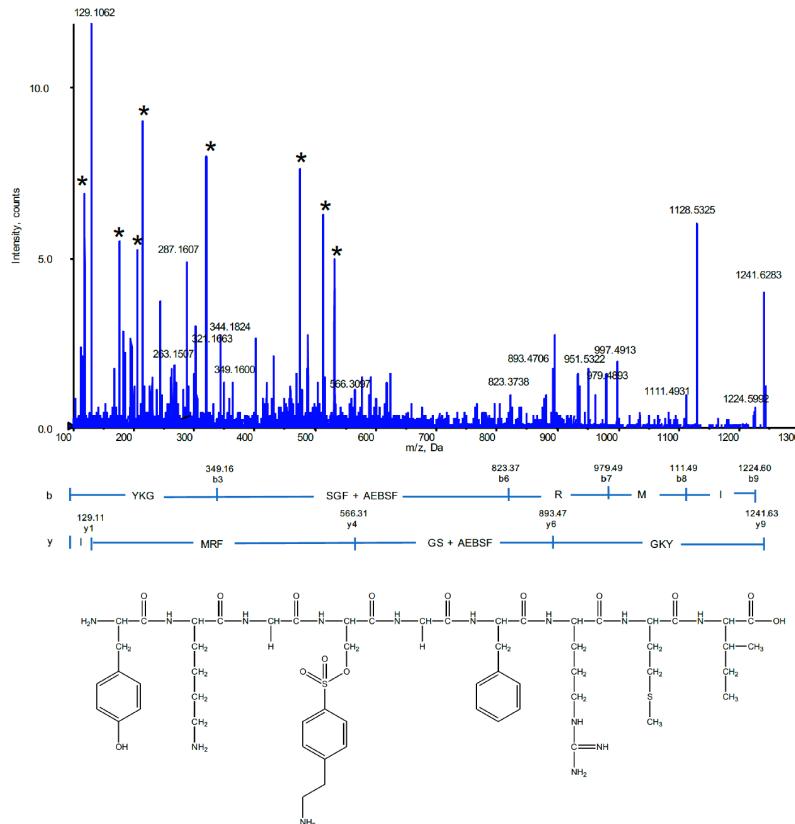

165

Figure 6. Chromatograms of the reaction mixture with AEBSF (a) day0 (b) day1, C: YKGS
(AEBSF) GFRMI, Theoretical MS: 1240.76, Experimental MS: 1240.6283

166

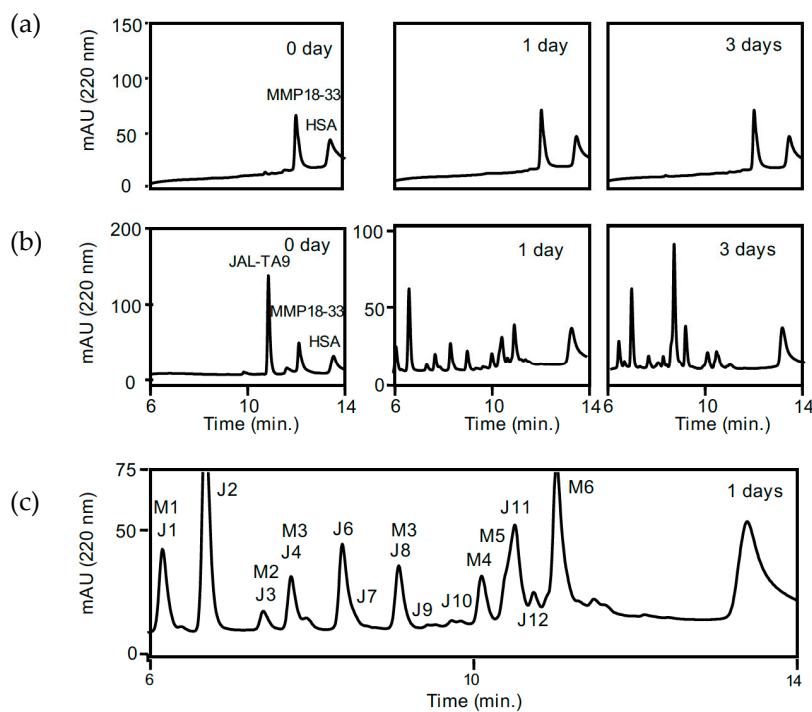
167

168

169

170

Figure 7. MS/MS analysis of the complexes with JAL-TA9 and AEBSF


171

172

173 2.2.2. Proteolysis of the fragment peptides derived from the prodomain of MMP-7

174 We next examined the proteolytic activity of JAL-TA9 against the fragment peptides derived
175 from the prodomain of MMP-7, which contained the cleavage site during the activation of
176 proMMP-7 *in vivo*. Two synthetic fragment peptides derived from the prodomain of MMP-7
177 (Figure S1b), MMP18-33 (LPLPQEAGGMSELQWE) and MMP18-40
178 (LPLPQEAGGMSELQWEQAQDYLK), were incubated with JAL-TA9 in the presence of HSA under
179 similar conditions to those described in Figure 3.

180 Judging from the chromatograms obtained by time dependent analysis, MMP18-33 was stable
181 for 3 days with HSA in PBS (Figure 8a). On the other hand, many peaks were appeared after 1 day
182 incubation in the presence of JAL-TA9 (Figure 8b). To identify these peaks, each peak was collected
183 (Figure 8c) and 6 peaks (M1-6) were identified to the derivatives from MMP18-33 (Table 5).
184 MMP18-40 was also examined according to the same manner, and 7 derivative peptides were
185 identified (Figure 7S). Their cleavage sites were determined (Figure 11).

186

187 **Figure 8.** Proteolytic cleavage of MMP18-33 by JAL-TA9 (a) MMP18-33 alone (b)
188 MMP18-33 with JAL-TA9 (c) peak collection

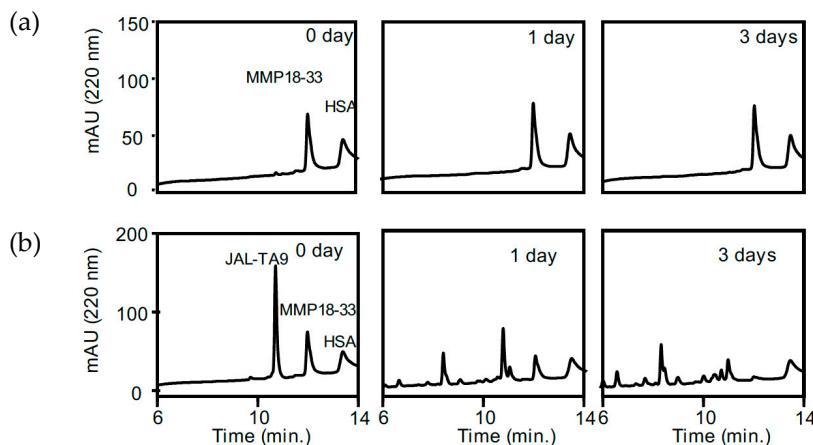
189

190

191

Table 5. Identification of fragment peptides of MMP18-33

Peak	Fragment	Theoretical MS	Experimental MS
M1	SEL	347.17	347.2215
M2	EAGGM	463.17	463.2255
M3	LPQ	356.21	356.3482
M4	LPLPQ	566.34	566.4081
M5	SELQWE	790.35	790.4393
M6	LPLPQEAG	710.36	709.4516
M6	LPLPQEA	766.42	766.4808


192

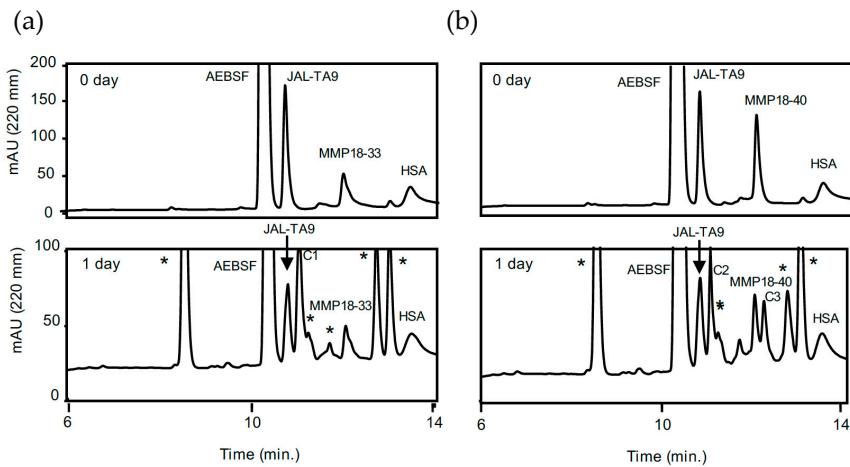
193

194

195

196 We also evaluate the proteolytic activity of JAL-TA9 after filtration of the reaction mixture with
 197 HSA as well as the auto-proteolytic activity ([Figure 5S](#)). The chromatograms profiles obtained time
 198 dependent analysis were the same to those obtained without filtration ([Figure 9](#)). These data indicate
 199 that the proteolysis of MMP18-33 was not caused by the contamination of some bacteria but caused
 200 by JAL-TA9.

201

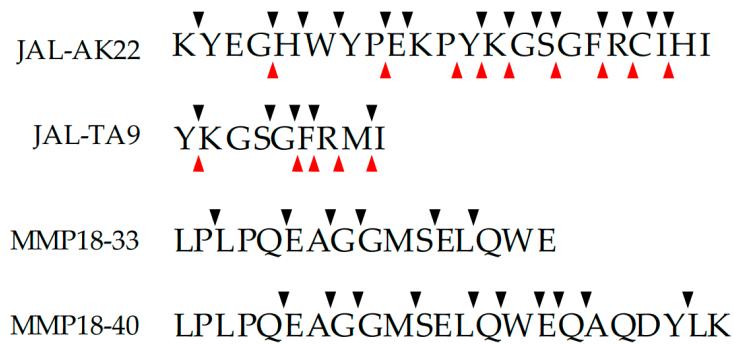

202
203**Figure 9.** Proteolytic activity of MMP18-33 by JAL-TA9 with filtration (a) MMP18-33 alone
(b) MMP18-33 with JAL-TA9

204

205
206
207

We next examined the inhibitory activity of AEBSF against cleavage reactions ([Figure 10](#)).
 MMP18-33 and MMP18-40 were incubated with JAL-TA9 in the presence of AEBSF, and the reaction
 mixtures were analyzed by HPLC. On the basis of MS analyses, C1 and C2 in Figure 10b were

208 identified as the complex of JAL-TA9 and AEBSF, and C3 was identified as the complex of AEBSF
209 and MMP18-40 (Figure S8). The peaks marked with a star (*) were not peptides and might be the
210 AEBSF products. These data indicated that cleavage reactions of proMMP-7 fragment peptides by
211 JAL-TA9 were inhibited by AEBSF, similar to the auto-proteolysis (Figure 6).

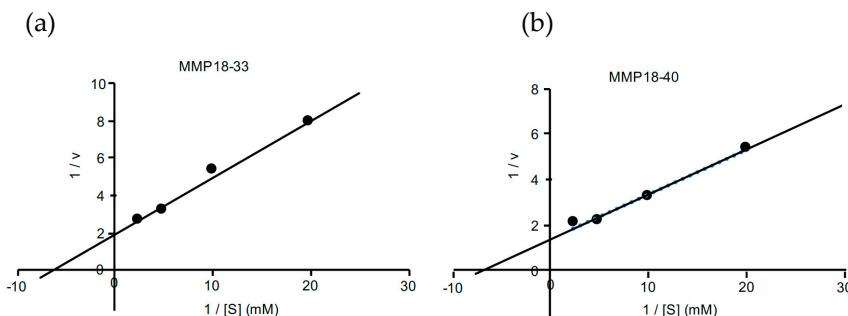

212
213
214
215 **Figure 10.** Proteolytic cleavage of proMMP-7 fragment peptides by JAL-TA9 in the
216 presence AEBSF (a) MMP18-33 (b) MMP18-40

217
218

219

220 As shown in [Figure 11](#), many cleavage sites by auto-proteolysis were identified with or without
 221 HSA. In addition, N-terminus regions of both synthetic peptides were cleaved at preferential sites,
 222 suggesting some specificity. However, the specificity did not appear to be absolute and thus could
 223 not be defined definitively, as in the case of auto-proteolysis.

224


225

226

227 **Figure 11.** Comparison of cleavage sites in the presence (▼) or absence of HSA (▲)

228

229 The K_m and V_{max} values of the cleavage reactions of these peptides by JAL-TA9 were 0.17 mM
 230 and 0.55 nmol/hr against MMP18-33 and 0.15 mM and 0.78 nmol/hr against MMP18-40, respectively
 231 ([Figure 12 and S8](#)). These values were lower than those of known protein enzymes such as
 232 chymotrypsin probably due to the absence of a substrate binding site.

233

234

Figure 12. Lineweaver-Burk plot (a) MMP-18-33 (b) MMP-18-40

235

236

237

238

239

240

241

242 **3. Discussion**

243 It is the general conception that proteolytic activity is the peculiar to a protein. We also did not
244 have conviction about the existence of proteolytic peptide, therefore we started this project to find a
245 chaperon peptide which could refold the unfolded proMMP-7. In this study, we identified the
246 synthetic peptide possessing the proteolytic activety. It is very exciting and amazing. The high rate
247 of this reaction shows that JAL-TA9 had high activity, potentially higher than that of JAL-AK22,
248 which had not completely degraded even after 5 days of incubation ([Figure 3 and 5](#)).

249 The most important question is an apprehension about the contamination of some bacteria. The
250 proteolytic activity obtained from the reaction mixture after filtration proved that the proteolysis
251 was not caused by the contamination of some bacteria but caused by JAL-TA9 ([Figure 5S and Figure](#)
252 [9](#)). In addition, JAL-TA9 showed the proteolytic activity after boiling with hot water or treatment
253 with organic solvents such as CH₃CN, CH₃OH, DMSO and TFA ([data not shown](#)). These data
254 supported the existence of the proteolytic activety of JAL-TA9 itself.

255 The aim of using HSA at first is to monitor the cleavage reaction against the major protein in
256 blood. We also examined the proteolytic activity of JAL-TA9 against 5 native proteins, γ -globulin
257 (γ -G), rabbit immuno-globulin G (IgG), cytochrome C (Cyt-C), lysozyme (Lys) and HSA, by
258 SDS-PAGE with silver staining and HPLC, and none were cleaved by JAL-TA9 ([Figure S10](#)). These
259 data suggest that JAL-TA9 may not display serious side effects. Interestingly, HSA enhanced the
260 auto-proteolytic activity of JAL-AK22 and JAL-TA9. However, the effect of HSA is not well
261 understood, but may involve the conformational stabilization of JAL-AK22 and JAL-TA9. AEBSF
262 inhibits the proteolytic activity of JAL-TA9 [\[9\]](#), suggesting the special conformation composed of
263 catalytic triad to show the serine protease-like activity [\[10, 11\]](#). The conformational study by NMR
264 supported the formation of catalytic triad [\[12\]](#). This conformation may be very flexible and stabilized
265 by the interaction of HSA. The kinetic parameters indicated that the proteolytic activety of JAL-TA9
266 is weaker than that of protein enzyme such as chymotrypsin due to lack of binding site ([Figure 12](#)).
267 In contrast, JAL-TA9 is easy to handle comparison of protein enzyme because of its stability.

268 Although Tob/BTG proteins are reported as the unstable proteins and difficult to purify
269 probably due to their instability [\[5\]](#), whether any Tob protein itself has proteolytic activity remains
270 unknown. Taken together our finding, it is suggested that Tob/BTG proteins may have proteolytic
271 activity. In addition, our study suggests the possibility that other peptide enzymes derived from
272 degradable and unstable proteins could inform research strategies not only in the field of
273 enzymology but also in molecular biology. The remaining important question is what the substrate
274 of JAL-TA9 is. We now almost finish the investigation of the substrate specificity [\[13\]](#) and
275 structure-activity relationship [\[14\]](#).

276

277

278

279

280

281 **4. Materials and Methods**282 *4.1 Chemical synthesis of peptides*

283 Peptides were synthesized from Fmoc-protected L-amino acid derivatives according to the
284 method described by Kojima *et al* [15], using an automated peptide synthesizer (model 433A,
285 Applied Biosystems, California, U. S. A., 0.1 mmol scale with preloaded resin). After deprotection
286 according to the manufacturer's protocol, each peptide was purified using reversed-phase HPLC
287 (Capcell Pak C18 column, SG, 10 or 15 mm i.d. x 250 mm; Shiseido Co., Ltd. Japan) with a linear
288 elution gradient from 0.1 % trifluoro acetic acid (TFA) to 50 % or 70 % CH₃CN containing 0.1 % TFA
289 over 30 min. The flow rate was set at 3.0 or 6.0 mL/min. The primary peak fractions were collected
290 and then lyophilized. The purity of the synthetic peptides and the progress of the enzymatic
291 reaction were confirmed by analytical reversed-phase HPLC (Capcell Pak C18 column, MGII, 4.6
292 mm i.d. x 150 mm; Shiseido Co. Ltd., Japan) at a flow rate of 1.0 mL/min with a linear elution
293 gradient from 0.1 % TFA to 70 % CH₃CN containing 0.1 % TFA. The column eluate was monitored
294 with a photodiode-array detector (SPD-M20A; Shimadzu, Japan). Each purified peptide was
295 characterized by ESI-MS using a Qstar Elite Hybrid LC-MS/MS system [15].

296

297 *4.2 Preparation of recombinant MMP-7 and identification of proteolytic activity*

298 The recombinant human proMMP-7 was prepared according to our previous report [1].
299 Briefly, proMMP-7 was overexpressed in *Escherichia coli* as a recombinant zymogen (31 kDa), the
300 C-terminus of which bears artificial hexa-histidines. The insoluble fraction of the *E. coli* extract
301 including u-proMMP-7 was purified in a single step using Ni-NTA resin after solubilization of the
302 precipitates with 8 M urea. The resin-bound recombinant protein was refolded into a f-proMMP-7
303 by reducing the urea concentration in a stepwise manner. The f-proMMP-7 is activatable by
304 *p*-amino-phenylmercuric acetate (APMA) or trypsin in an autocatalytic manner. The proteolytic
305 activity of the actMMP-7 was confirmed by a microplate reader assay using the fluorescence
306 quenching substrate, 7-methoxycoumarin-4-yl-acetyl-Pro-Leu-Gly-Leu-[N³-(2,4-dinitrophenyl)-L-2,3-diaminopropionyl]-
307 Ala-Arg-NH₂ (3163-v: Peptide Institute, Osaka, Japan). Briefly, 60 μ L of assay buffer for MMP-7
308 (final conc.: 50 mM Tris-HCl, pH 7.5; 150 mM NaCl; 10 mM CaCl₂; 5 μ M ZnCl₂; 0.05 % Brij-35; 3 mM
309 NaN₃) containing an appropriate amount of MMP-7 (30 μ L) and 20 μ L of a 1 mM peptide solution
310 (final conc., 0.2 mM) was preincubated in each well of a 96-well microplate at 37 °C for 15 min, and
311 then 180 μ L of the fluorescence quenching substrate (3163-v, final conc., 2.5 μ M) was added to
312 initiate the proteolytic reaction. The fluorescence intensity was measured at 320 nm for excitation
313 and 390 nm for emission every 15 min for 2 hrs or every 30 min for 6 hrs without interrupting the
314 reaction using a fluorescence microplate reader (FP8300, JASCO, Tokyo, Japan). To identify the
315 proteolytic activity of JAL-TA9, u-proMMP-7 or f-proMMP7 was used in place of actMMP-7
316 (Scheme 1).

317

318

319

320 4.3 Analysis of proteolytic activity and determination of cleavage sites

321 JAL-TA9 (final conc., 0.2 mM) was individually incubated with or without the fragment
322 peptide derived from the prodomain of MMP-7 (final conc., 0.05 mM) in the presence or absence of
323 human serum albumin (HSA) (final conc., 0.025 % w/v) in PBS (pH 7.4) at 37 °C. A portion of the
324 reaction mixture was analyzed in a time-dependent manner on the analytical HPLC system
325 described above. The peak fractions monitored at 220 nm were collected into microtubes
326 (Eppendorf Safe-Lock Tubes, 1.5 mL).

327 After lyophilization, the appropriate quantity of 36 % CH₃CN containing 0.1 % HCOOH was
328 determined based on the chromatographic peak height and added with stirring by an automatic
329 mixer. The cleavage site were determined by ESI-MS using the flow injection method with 70 %
330 CH₃CN containing 0.1 % HCOOH on a Qstar Hybrid LC-MS/MS system (ABI). The flow rate was set
331 at 0.1 mL/min [15].

332

333 4.4 Kinetic parameters

334 The enzymatic activity of JAL-TA9 was measured using MMP18-33 or MMP18-40 as
335 substrates at 4 different final concentrations (50, 100, 200 and 400 μM). JAL-TA9 was incubated
336 with MMP18-33 or MMP18-40 in the same manner as in the determination of the proteolytic activity
337 described above. The reaction mixture (10 μL) was analyzed on an analytical HPLC at the initial
338 time and after 24 hrs of incubation. The peak heights of MMP18-33 and MMP18-40 gave linear fits
339 on the Lineweaver-Burk plots.

340 5. Conclusions

341 JAL-TA9 possesses serine protease-like activity [9-11] and activates proMMP-7 by cleaving the
342 prodomain region. To the best of our knowledge, protease-like activity has never been reported in
343 such small synthetic peptides, and we therefore propose that these peptides with protease-like
344 activity, such as JAL-TA9, be called Catalytides (catalytic peptides). We expect that our findings
345 will stimulate the development of novel Catalytides and related applications.

346 6. Patents

347 T. Yamamoto, T. Akizawa 2016 NOVEL PEPTIDE Patent Pending No US62/275,599, and 2016
348 NOVEL HYDROLASE-LIKE PEPTIDE AND ITS USE Patent Pending No JP2016-068496
349

350 **Supplementary Materials:** The following are available online at www.mdpi.com/link, Figure S1: Amino acid
351 sequences of Tob1 and MMP-7, S2: Auto-proteolytic activity of JAL-AK22 and JAL-TA9, S3: Structure-activity
352 relationship of JAL-TA9 derivative peptides, S4: Determination of the optimal conditions for the
353 auto-proteolytic activity of JAL-TA9, S5: Auto-proteolytic activity of JAL-TA9 with or without filtration, S6:
354 Cleavage reactions of MMP-7 fragment peptides by JAL-TA9, S7: Identification of cleavage sites , S8:
355 Identification of the complex with JAL-TA9 and AEBSF, S9: Kinetic parameters, S10: Proteolytic activity of
356 JAL-TA9 against native proteins.

357

358 **Acknowledgments:** This work was supported by JSPS KAKENHI Grant Numbers 15K07908. We gratefully
359 thank To Dr. Mitsuaki Yoshida of Cancer Institute and Dr. Hidemitsu Pan-Hou for invaluable discussion and
360 suggestion.

361

362 **Author Contributions:** T.A. were responsible for experimental design and data interpretation. T.A. and
363 R.N. mainly contributed to writing and reversing the manuscript. M.T. was conducted screening of proteolytic
364 peptide. R.N. and A.K. were conducted all experiments, especially HPLC analysis and determination of
365 cleavage sites. R.N., M.K. and Y.H. were contributed to MS analysis. M.K. and R.N. analyzed JAL-TA9
366 conformation by Computer modeling.

367 **Conflicts of Interest:** The authors declare no conflict of interest.

368 **References**

- 369 1. Itoh, M.; Masuda, K.; Ito, Y.; Akizawa, T.; Yoshioka, M.; Imai, K.; Okada, Y.; Sato, H.; Seiki, M. Purification
370 and Refolding of Recombinant Human proMMP-7 (pro-Matrilysin) Expressed in Escherichia coli and Its
371 Characterization. *J. Biochem.* **1996**, *119*, 667-673
- 372 2. Oku, N.; Matsukawa, M.; Yamakawa, S.; Asai, T.; Yahara, S.; Hashimoto, F.; Akizawa, T. Inhibitory Effect
373 of Green Tea Polyphenols on Membrane-Type 1 Matrix Metalloproteinase, MT1-MMP. *Biol. Pharm. Bull.*
374 **2003**, *26*(9) 1235-1238
- 375 3. Taniguchi, M.; Matsumura, K.; Nakamura, R.; Kojima, A.; Konishi, M.; Akizawa, T. MMP-7 cleaves
376 amyloid β fragment peptides and copper ion inhibits the degradation. *Biometals.* **2017**, *30*, 797-807, DOI.
377 10.1007/s10534-017-0048-4
- 378 4. Matsuda, S.; Kawamura-Tsuzuku, J.; Ohsugi, M.; Yoshida, M.; Emi, M.; Nakamura, Y.; Onda, M.; Yoshida,
379 Y.; Nishiyama, A.; Yamamoto, T. Tob, a novel protein that interacts with p185erbB2, is associated with
380 anti-proliferative activity. *Oncogene* **1996**, *12*, 705-713 DOI. PubMed: 8632892
- 381 5. Horiuchi, M.; Takeuchi, K.; Noda, N.; Muroya, N.; Suzuki, T.; Nakamura, T.; Kawamura-Tsuzuku, J.;
382 Takahasi, K.; Yamamoto, T.; Inagaki, F. Structural Basis for the Antiproliferative Activity of the Tob-hCaf1
383 Complex. *JBC.* **2009**, *284*(19), 13244-13255, DOI. 10.1074/jbc.M809250200
- 384 6. Winkler, G.S. The Mammalian Anti-Proliferative BTG/Tob Protein Family. *J. Cell. Physiol.* **2010**, *222*, 66-72,
385 DOI. 10.1002/jcb.21919.
- 386 7. Kojima, A.; Konishi, M.; Noshi, M.; Akizawa, T. Finding of the chaperone peptide. *Peptide Science* **2008**,
387 **2009**, 277-280, Proceedings of The 53th Japanese Peptide Symposium, The official Journal of Japanese Peptide
388 Society
- 389 8. Crabbe, T.; Willenbrock, F.; Eaton, D.; Hynds, P.; Carne, A. F.; Murphy, G.; Docherty, A. J. Biochemical
390 characterization of matrylysin. Activation conformers to the stepwise mechanisms proposed for other
391 matrix metalloproteinases. *Biochemistry.* **1992**, *31*, 8500-8507
- 392 9. Nakamura, R.; Kojima, A.; Taniguchi, M.; Konishi, M.; Tokumasu, M.; Yamamoto, T.; Akizawa, T. THE
393 NOVEL FINDING OF SERINE PROTEASE-LIKE PEPTIDE. *Peptide Science* **2016**, **2017**, Proceedings of The
394 45th Japanese Peptide Symposium, The official Journal of Japanese Peptide Society, Tokto
- 395 10. Enrico Di Cera. Serine Proteases. *IUBMB Life* **2009**, *61*(5), 510-515, DOI. 10.1002/iub.186
- 396 11. Hedstrom, L. Serine Protease Mechanism and Specificity. *Chem. Rev.* **2002**, *102*, 4501-4523
- 397 12. Nakamura, R.; Konishi, M.; Tanaka, R.; Taniguchi, M.; Kojima, A.; Yamamoto, T.; Akizawa, T. STRUCTURAL
398 ANALYSIS OF THE NOVEL HYDROLASE-LIKE PEPTIDE (JAL-TA9). *Peptides* **2016**, **2016**,
399 111-112, Proceedings of 34th European Peptide Symposium 2016 & 8th International Peptide Symposium, Leipzig
- 400 13. Akizawa, T.; Nakamura, R.; Kojima, A.; Konishi, M.; Taniguchi, M.; Tokumasu, M.; Yamamoto, T.
401 FINDING OF THE NOVEL HYDROLASE-LIKE PEPTIDE (JAL-TA9) DIGESTING $\text{A}\beta$ PROTEIN. *Peptides*
402 **2016**, **2016**, 28-29, Proceedings of 34th European Peptide Symposium 2016 & 8th International Peptide
403 Symposium, Leipzig
- 404 14. Nakamura, R.; Hatahara, Y.; Konishi, M.; Taniguchi, M.; Akizawa, T. STRUCTURE-ACTIVITY
405 RELATIONSHIP OF 5-MER PEPTIDES DERIVED FROM JAL-TA9. *Peptide Science* **2017**, **2018**, Proceedings
406 of The 53th Japanese Peptide Symposium, The official Journal of Japanese Peptide Society, Kyoto
- 407 15. Kojima, A.; Konishi, M.; Akizawa, T. Prion Fragment Peptides Are Digested with Membrane Type Matrix
408 Metalloproteinases and Acquire Enzyme Resistance through Cu^{2+} -binding. *Biomolecules* **2014**, *4*, 510-526
409 (2014); DOI. 10.3390/biom4020510

410