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In this work, we consider a one-dimensional laminated beam in the case of non-equal
wave speeds with only one infinite memory on the effective rotation angle. In this
case, we establish the general decay result for the energy of solution without any kind
of internal or boundary control. The main result is obtained by applying the method
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second-order energy.
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1 Introduction

In this paper, we are concerned the following initial boundary value problem
( PPt + G(lﬁ - (Pa:)x = 07 (l" t) € (07 1) X (07 +OO)7
Ip(3w — V)i — G — pz) = DBw — 1Y) s

+o00
—|—/ 9(8)(Bw — V) e (x,t — s)ds = 0, (z,t) € (0,1) x (0, 400),
0

Lowy + G — ¢r) + %’yw + %Bwt — Dwg, =0, (z,t) € (0,1) x (0, +00), (1.1)
90(‘%'70) = @O(x)vw(xv _t) = 1/}0(x,t),w($, _t) = wo(l’,t), (.Z',t) € [07 1] X (07+OO)7
3075(3370) = (,01(.1:),1%(:6,0) = wl(‘r)th(gcao) = w1($)7 T e [Ov 1]’

\ ng(O,t) = pr(Lt) = ¢(Oat) = ’(ﬂ(l,t) = w(O,t) = w(lat) =0,te [07 +OO)7

where g : RT — R™ is a given function and p, G, I 0 D, v, 3 are positive constants. The infinite
integral term in represents the infinite memory.

The model for this structure has been derived and treated in [7]. The authors considered the
following system

PPt + G(?/) - @x)a: = 07 (fL‘, t) € (O? 1) X (07 +OO)7

Ip(gw - w)tt - GW - 8090) - D(3’w - w)xz = 07 (.CI}, t) € (07 1) X (07 —i—OO), (1'2)

3wy + 3G(Y — @) + dyw + 4w, — 3Dwg, = 0, (x,t) € (0,1) x (0, +00)
with the initial data and the cantilever boundary conditions. Here ¢(x,t) denotes the transverse
displacement of the beam which departs from its equilibrium position, (x,t) represents the
rotation angle, w(z,t) is proportional to the amount of slip along the interface at time ¢ and

longitudinal spatial variable x, 3w — 1 denotes the effective rotation angle and the third equation
of (1.2)) describes the dynamics of the slip. The coefficients p, G, 1,, D,~, 3 > 0 denote the density
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of the beams, the shear stiffness, the mass moment of inertia, the flexural rigidity, the adhesive
stiffness of the beams, and the adhesive damping parameter, respectively. For the stability of the
laminated beams with finite memory, Lo and Tatar [10] studied a laminated beam with a finite
memory acting on the effective rotation angle. The authors showed that for viscoelastic material
there is no need for any kind of internal or boundary control to stabilize exponentially the system
of laminated beams with interfacial slip. For more papers concerning the laminated beam, we
refer to [11), 14} [16].

Moreover, it is well known that when w = 0, we recover the standard Timoshenko system.
Up to now, many people have been interested in the question of stability of Timoshenko systems
with infinite memory and different speeds of wave propagation. Guesmia et al. [6] considered
a vibrating system of Timoshenko type in a one-dimensional bounded domain with an infinite
history acting in the equation of the rotation angle of the form

P1Ptt — kl(@x + "7[))2 =0, (l‘,t) S (07 L) X (07 +OO)’

+o00 (13)
P2 — kathyr + k1(pr + 1) + /0 9(8)za(z,t — 8)ds =0, (x,t) € (0,L) x (0,400).

The authors proved a general decay of the solution for the case of equal-speed wave propagation
as well as for the nonequal-speed case. For more papers related to the Timoshenko system with
memory or different speeds of wave propagation, we refer the reader to [3, 4, [5, 8, 12, [15].

In this paper, for a wide class of relaxation function, we intend to study the general decay
rate of the solutions for problem (1.1) under non-equal wave speeds. For this purpose, we have
two key points in the proofs. On the one hand, to deal with the infinite memory, we introduce
the method used in [6]. On the other hand, to estimate the non-equal wave speeds term in ,
we use the second-order energy. This is motivated by Guesmia et al.’s work [6], in which a linear
Timoshenko system with infinite memory was studied and a general decay result was established
for the case of equal-speed wave propagation and the opposite one.

The remaining part of this paper is organized as follows. In section 2, we present some
hypotheses needed for our work and state the main results. In section 3, we prove the general
decay result of problem for the relaxation function g satisfying assumption (G1) and (G2).

2 Preliminaries and main results

In this section, we begin with some materials and known results for problem (1.1)). For the
relaxation function g, we have the following assumptions:
(G1) g : RT — R™" is a nonincreasing differentiable function such that

+00
g(0) >0, D—/ g(s)ds=D —gp=1>0.
0

(G2) There exists an increasing strictly convex function G : RT — R* of class C'(R*) N
C?(0,+00) satisfying

G0)=G(0)=0 and lim G'(t) = +oo (2.1)

t——+o0
such that

g gl N
A Ta oy i e ST M R 22)
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Following the ideal of [2], we first set
n(z,t,s) = Bw —Y)(z,t) — Bw —Y)(x,t —s), (x,t,s) € (0,1) x (0,+00) x (0,400). (2.3)
Then, we have
M+ ns — (Bw—1) =0, (x,t,5) € (0,1) x (0,+00) x (0,+00). (2.4)
Therefore, problem is equivalent to

( ppit + G(i/l - pr):r: = 07 (JU, t) € (07 1) X (07 +OO)7
Ip(3w V)it — G — pz) = 13w — V)za

+oo
—/0 9($)Nzz(x,8)ds =0, (x,t,s) € (0,1) x (0,400) x (0, 4+00),

4 4
Lwy + G — o) + syw + gﬁwt — Dwy, =0, (xz,t) € (0,1) x (0, 4+00),

3
m+ns — (3w —1) =0, (x,t,s) € (0,1) x (0,+00) x (0,+00)
(2.5)
with the initial data and boundary conditions
90(37, 0) = (PO(x)v ¢(xa 0) = ¢0($), w(x,O) = ’U}()(l'), T E [07 1]1
et(x,0) = 1(x), Yi(x,0) = 1 (), we(z,0) = wi(z), z € [0,1],
Som(oat) = Qom(lvﬂ = ¢(07t) = ’(b(l’t) = w(oat) = U}(l,t) =0,t¢€ [ , +00 )
n(0,t,s) = n(1,t,s) =0, (t, ) € [0,+00) x [0, +00),
n(x,t,0) =0, (z,t) €[0,1] x (0, +00),
77(33707 S) :770(an)7 (:E?S) € [ ] (07+OO)
(2.6)
Next, let
U = (¢,3w — ¥, w, ¢, 3wy — Py, wy,m) "
and
Uo(x) = (900(33)’ 3w0($) - 17[)0(11,'), wO(:E)’ 901('1")7 3w1(x) - 1/11(55)7 wl(x)a 770(£7 8))T
Hence, problem - is equivalent to the following abstract Cauchy problem:
U = U,
(2.7)
{ Ul(x,0) = U°(x),
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where &7 is a linear operator

Pt
3wy — Yy

Wt

G
_;(¢_¢w)x
FU =
1 [T

I/ g(s)nm(%s)ds
p pJO
oy, 28D
3, 3,

—Ns + (3’UJ - 7;[})15

Now, we consider the following spaces:

1
2 _ 2 _ e — 1_ g1 2
LA&D—{@'weL(QD-A<M)d <@, HY = H'(0,1) 1 L2(0, 1),

12 = {o |0 e H20.1) 5 0,00 = 1) =0}
and define the functional space of U as follows:
A = HY0,1) x (HE(0,1))* x L2(0,1) x (L*(0,1))° x Ly, (2.8)
where
1 p+oo
Ly, = {77 ' n:RT — H(O, 1),/0 /0 g(s)n?(z, s)dsdz < —f-oo}.
Then, the domain of 7 is defined by
D(&/) = H2(0,1) N H(0,1) x (H2(0,1) N HY(0,1))° x HL0,1) x (H{(0,1))* x %,

where

£, = {77 ’ n € Lg,ns € Lg,n(x,t,0) :0}.

To state our decay result, we introduce the following energy functional:

1 1
E(t) :2/0 (ptpf +1,(3w — 1/})? + 3Ipwt2 + G — gox)Q + (3w — @b)i + 3Dw§ + 47w2>dx

1 p4o0
—i—;/o /0 g(8)n2(z, s)dsdz. (2.9)

Our decay result reads as follows:
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Theorem 2.1 Assume that (G1), (G2) and & # % hold. For any U° € D(&/) satisfying, for

some My > 0,
1 1
max{ / ne.(z, s)d:c,/ Mo (T, s)dx} < My, Vs>0. (2.10)
0 0
Then, there exist positive constants C, €y such that the energy E(t) associated with problem (|L.1))
satisfies
4 (C
E(t) <Gy ) vt >0, (2.11)
where
Go(s) = sG'(egs)(s € RT). (2.12)

3 General decay of the solution

In this section, we prove the general decay result as stated in Theorem[2.1] It will be accomplished
by constructing a Lyapunov functional L(t) equivalent to E(t).
Before proving our main result, we will state and prove some useful lemmas in advance.

Lemma 3.1 The energy functional E(t) defined by (2.9) satisfies

1 p+4oo0
—E = —45/ w?dz + ;/0 /0 g (s)n?(x, s)dsdz. (3.1)

Proof. Multiplying the first equation of (2.1)) by ¢; and integrating over (0, 1), we have

1d [*
24t J, P‘Ptdff‘i'/ G(Y — ¢a)aprdz = 0.
Then using integration by parts and the boundary conditions in (2.2)), we obtain

1d

1
s [ et [ G- eremtr =0 (32)

Note that
1 1
/0 Gt — po)pmde = — / G — 02) (W — pr — P)eda

_th/ G(¥ — ¢y d:c+/ G(¢p — o )thrd.

Hence, equation (3.2]) becomes

1

1
92 dt 0 (P@? + Gy — %c)2) dx — /0 G — @z)dx = 0. (3.3)

Next, multiplying the second equation of (2.1)) by 3w; — 1, and integrating over (0, 1), we get

1 1
| 10— 0w — s [ 6w - pa) (30— vy
0 0

5
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1 1 p4o0
- /0 1(Bw — ) e (3w — ) d — /0 /0 9(8)Nza(x, $)ds(3w — ¢)dx = 0.

Then, integrating by parts, using the boundary conditions in (2.2)) and (G}), we arrive at

d 1 +o0o
dt/o (I,(3w — V)2 +1(3w — )2 +2dt/ / s)n2(z, s)dsda

1 ~+o00
- [[aw - ea@u-vnae 5 [ [ deniw s =0 (34)

N

Similarly, multiplying the third equation of (2.1) by 3w; and integrating over (0, 1), we have
1

1 1
dywwidr + / 4ﬁwt2d:c — / 3Dwywidr = 0.
0 0

1 1
/ 31, wiwidz + / 3G(¢Y — i )wedx + /
0 0 0

Then, integrating by parts and using the boundary conditions in (2.2), we obtain

1d

1 1
34 (3Ipwt + 4yw? + 3Dw ) dz + / 3G(¢Y — oz )widx + / 4ﬁw§dg; —=0. (3.5)
0 0 0

Finally, adding (3.3)-(3.5]), the proof is complete.
Next, to construct a Lyapunov functional equivalent to the energy, we will prove several

lemmas with the purpose of creating negative counterparts of the terms that appear in the energy.
As in [10], we consider the following functionals:

1

1 1
Li(t) = —p/ ppdr,  Ia(t) = Ip/ Bw —¢)(Bw —Y)dz and I3(t) = Ip/ wwdz.
0 0 0
Then the following result holds:

Lemma 3.2 The functional I, (t) satisfies, for any e > 0,

1 1 1 1
IN(t) < — p/o ?dx + (G + 1) /0 (¢ — pg)2dx + c(e1) /0 (3w — 1)2dz + c(e1) /0 widz, (3.6)

where c(e1) is a positive constant depending on €.

Proof. Differentiating I;(¢) with respect to ¢, using the first equation of problem (2.1) and
integrating by parts, we have

1 1
L) =—p /0 SR /0 oot — po)da

1 1 1
_ 2 _ _ _ _
_ /0 S 1 G /O (W — 02) (6 — o)da — G /O Bl — po)de

Making use of Young’s and Poincaré’s inequalities for the last term of this equality, we get,

It < - p/ sotdx+G/ (6 — ) dx+alG/ (6 — 92)? 24y,

where C), is the poincaré constant. Note that

1 1
/ Yidr = / (1 — 3w + 3w)2da.
0 0

6


http://dx.doi.org/10.20944/preprints201702.0082.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 February 2017 d0i:10.20944/preprints201702.0082.v1

Then

1 1 1 1
It < - p/ pidz + (G + 51G)/ (¢ — @g)2da + GG (¢ — 3w)idx + QCPG/ w2dx
0 0 2e1 Jo 2e1 Jo

1

1 1 1
< - p/o ©?dz + (G + 1) /0 (Y — pg)2dx + c(e) /0 (¢ — 3w)2dz + c(e1) /0 w2dz.

Hence, the assertion follows immediately.

Lemma 3.3 The functional I2(t) satisfies, for any eq > 0,
1 1
B <— (-2 [ Gu—vPde+1, [ (Go-pii
0 0

1 1 “+00
+ e(ea) /0 (6 — 2)2da + c(e2) /0 /0 g()2(x, s)dsda, (3.7)

where c(e2) is a positive constant depending on €s.

Proof. Taking the derivative of Iy(t) with respect to ¢, using the second equation of problem
(2.1) and integrating by parts, we obtain

1 1
B0 =1, [ o= e 1 [ (3o - )i

1
0

1 +oo
+ G/o Bw — V) (Y — @ )dx — / (Bw — 1/})33/0 9(8)nz(z, s)dsdx.

Then, by using the Young’s, Poincaré’s and Hoider’s inequalities for the last two terms of this
equality, we have

1

1 1
Ih(t) <1, /0 (3w —2p)2dx — 1 /0 (3w — )2dx + £20,G /O (3w — 1p)2dx

G 1 1 gO 1 oo
+ 9 [ W= po)da + e / (3w — )2de + I / / o) (x, 5)dsda
0 dea Jo Jo

deg Jo
1 1 a 1
SIp/O (3w — ¥)idx — (I — £20,G — &32) /0 (3w — ¢)2dx + 452/0 (Y — @p)%da
1 pt+oo
+ 4%)2 /0 /0 g(s)n(x, s)dsdx
1 1 1
<1, [ (o= wide = -e) [ Gu-vlde s ) [ 0 e
1 oo
welea) [ [ st sy

where C), is the poincaré constant and the Lemma is proved.

Lemma 3.4 The functional I5(t) satisfies, for any e3 > 0,

/ (Y Loy _ by Loy ' R
I;(t) < (3 53)/0 wdx D/0 wxdx—f—c(sg)/o wtd:c—i—c(sg)/o (Y — @g)“dz, (3.8)

where c(e3) is a positive constant depending on €3.
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Proof. Differentiating I3(¢t) with respect to t, using the third equation of problem (2.1 and
integrating by parts, we obtain

1 4y [ 1 1 48 [1
Ii(t) = Ip/ w?dz — / w?dz — D/ w2dz — G/ w(Y — @ )dx — / wwydz.
0 3 Jo 0 0 3 Jo

Making use of Young’s inequality for the last two terms of this equality, we get,

1 4y (! 1 1
I(t) SIP/ wtzd:c— / dex—D/ widm—i—EgG/ w?dx
0 0 0
4 1 1
(w— )de+53/3/ dea:JrB/ w2dz
0 3e3 Jo
B /1 2 4’)’ des /1 2 /1 2 G /1 2
<|(I,+— dz — G— dz — D d — —@z)°d
_<p+3€3 Owtw 3 3 Ow:E wa$+4630(1/1 o) dx
! 2 Ay ! 2 ! 2 ! 2
<c(e3) ; wydr — 3 e ; wdx — D ; wydz + c(e3) ; (Y — pg)=de,

which is exactly (3.8]).

Beyond that, to overcome the difficulty brought by infinite memory, we introduce two addi-

tional functionals:

1 1 +00
1) =2 [ oo, [ Gu-vntw-par-2 [ o [ o) 0-un-sys

1 +o00
50 =1, [ Go-v) [ ot s
0 0
Lemma 3.5 The functional 14(t) satisfies, for any eq > 0,

1 1 1 1
It < - (3G — 54)/0 (Y — @z)?dx + 84/0 (3w — ¥)2dx + (e4 + c(eq)) /0 w?dz + 64/0 2z,
(3.9)

where c(e4) is a positive constant depending on ey.

Proof. Taking the derivative of I4(¢) with respect to ¢ and using the first two equations of

problem , we have
It =—D/ (1 — o) (30— 1), dx+/ o3 — sztd:c—G/ (0 — )’
+o0o
1 /0 (30 — ) (8 — 02)da /0 (6 — o) /0 9(5)nsadsda

+oo

1 1
-1, / (3w — B)e(th — pu)ed + /0 (% — pa)e / 9(5)3w — P)a(t — 5)dsdz

0

/ Pt /+oo (Bw — )¢ (t — s)dsdx. (3.10)

Using (2.3)), the last two terms in (3.10) can be rewritten as follows
1 400 400
[ @ [ g0 v)alt - e - £ / o [ a0 Dt - o)
0 0

8
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1 +oo 1 +00
= [ [ aEu— st [(wpa)e [ alendsda
p 1 +oo p 1 +o0o
Lo [ ateu-waaster & [o [ atsinadsda. (3.11)
e 0 G Jo 0
Then, thanks to (2.4, (3.10) and (3.11)), integrating by parts, we have

=6 [ w-e+ (1) [ a0 vyate 1, [ Gu-)was

) 1 +o0o
+5 / Pt / g'(s)nzdsda. (3.12)
G 0 0

Next, using Young’s and Holder’s inequalities for the last two terms of this equality, we obtain

1 Dp 1 1
Ii(t) < — G/ (Y — @z)?dx + (G — 1p> / 0 (3w — V) ydx + 541,,/ Yide
0 0 0

I, +oo
£ 3 de + =% | pidx — n2dsd
i O(w 0 “G 4540// sar.

It is worth noting that

1 1
/ Yide = / (1 — 3w + 3w)?dz.
0 0

Hence

1 1 1
L <-G / (W — p)2dz + (%’) _ Ip) /0 1 (3w — ) medda + 241, / (3w — )2da

0

1 400
1, €4p
18e41 fde+ -2 [ (3 7d prd // )nadsd
+ 64,,/0 ZL‘+44 (w V)3 x—l—G prde — 454G s)nzdsdx

I,
< - G/ (Y — pp)2dx + (254I + 4)/ (3w — ¢)7dx + 18241, / 2dx + %p ?dx
0 0

+o0 ) 1
“F 7 — ),
4€4G/ / dsdw—l— < e p>/0 ot (3w — ) pedx

1 1
< - G/ (¢ — @o)?dz + (24 + (e /3w ) d:r—|—64/ @fd:f:%—&;/ widzr
0 0

+oo ) 1
ceyq / / n2dsd:v—|— <G Ip>/ ot (3w — ) pdex.
0

This completes the proof of the lemma.

Lemma 3.6 The functional I5(t) satisfies, for any es > 0,

1

1 1
IL(t) < — (Iyg0 — €5) / (3w — 1) 2dx + 55/ (Y — pg)dx + 85/0 (3w — 1p)2dx

+oo +oo
c(es // n2dsdz + c(es // (s)n2dsdz, (3.13)

where c(e5) is a positive constant depending on es.
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Proof. Differentiating I5(t) with respect to ¢, using the second equation of problem ({2.1)), inte-
grating by parts and using the fact that

+o0o +o00o
o /O a(s)n(s)ds =0, /0 ot — 5)((3w — B)(t) — (3w — $)(s))ds
“+oo
- /0 §'(t — 5)((3w — B)(t) — (3w — ) (s))ds

n (/;OO gt - s)ds) (3w — 1)

+oo
:/0 g (s)n(s)ds + go (3w —)s,

we get

1 1 —+o00
L(t) = - Lo /O (3w — )?dz — G /0 (W — o) /0 a(s)n(e, s)dsdz

wif (3w ), / " (s, s)dsda + / 1 (f " e s)ds)2 da

1 —+o00
- Ip/o (3w — ¢)t/0 g (s)n(z, s)dsdz.

Then, using Young’s, Poincaré’s and Hoélder’s inequalities for the last four terms of this equality,
we deduce

1 1 400 2 1
RO <~ Lo [ (u= s+ [ ( | stm. s)ds) datesG [ (0= poda
1 400 2 1
GG ; </0 g(s)nx(z,s)ds> dx+65l/0 (Bw — ¢)gdx

465

I 1 +00 2 1
+ — (/0 9(s)nz(z, s)ds) dx + 55Ip/0 (Bw — ¢)?dx

465

+oo 2
+Cp[p/ </ g'(s)nxds> dz
4es Jo \Jo

1 1 “+o0 1
<~ Lgo / (3w — )2dz + go / / g(s)n2(z, s)dsda + e5G /0 (0 — po)?de

+oo
CGQO/ / (s)n2(, s)dsda:—i—ag,l/ (3w —¢)2d
465
lgo ee 2
/ / s)n2(z, s)dsdz + e51, / (Bw —)idx

465

I Heo
_ G pg / / s)n2(xz, s)dsdz

1
< (Lgo - 3) / (3w — )2dz + &5 / (6 — n)?de + &5 /0 (3w — )2d

+o0 +o0
+ c(e5) / / (8)n2(z, s)dsdx — c(e5) / / (s)n2(x, s)dsdz,

where C,, is the poincaré constant and the proof is complete. Now, we are in a position to prove
our main result. Let &1, do, 03, d4, 05 > 0, we define

L(t) = E(t) + 6111(t) + 0212(t) + 0313(t) + 0414(t) + d515(2). (3.14)

10

d0i:10.20944/preprints201702.0082.v1
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Using the Cauchy-Schwarz inequality and the Poincaré inequality, one can easily see that all the
Ii(t),i = 1,2,3,4,5 are bounded by an expression containing the existing terms in the energy
E(t). This leads to the equivalence of L(t) and E(t).

Gathering the estimates in the previous lemmas, we obtain

1 1
L'(t) < — (61p — 6424) / pida — (651,90 — 021, — 0ues — Sac(es) — 65e5) / (3w — ¥)7dz
0 0

1 1
- (4ﬁ - (530(83) - 5484)/ w?dx - ((SgD - 510(61))/ wzdﬁ
0 0

1
(546 — 51G — 11 — bacles) — bscles) — byes) / (W — po)da
0

1 4 1
— (52l — 510(61) — (5262 — 5585)/ (3w — zb)ida: — <;(53 — 5353) / w2dCL‘
0 0

+ <; — d4c(eq) — 550(55)) /01 /0+00 d (s)n2dsdz
+ (02¢(e2) + d5¢(es)) /01 /OJroog(s)nfcdsdx + (lz;p - Ip> /01 ot(Bw — P)pedz.  (3.15)

At this point, we need to choose our constants very carefully. First, we choose €1,¢9,¢3,€4,¢€5
small enough so that

1

/ sip (1, 951p90 ! 21 (on 2
L'(t) < — 5 prdr — 5 9o, — d4c(ea) (Bwy — ) *da — (28 — d3¢(e3)) wydz
0 0 0

1 1
— (53D — 510(61))/0 wf,d — (54267Y - 51G - 520(52) - 636(53)> /O (w - ‘Pﬂc)Qd‘/L‘

1 9 1
- <52l - 610(51)> / (3w, — 1y )?dx — 25y w?dz
2 0 3 Jo

+ <; ~ Sacles) — 550(55)> /0 1 /0 T (s yndsds
+ (02c(g2) + d5¢(es)) /0 1 /0 +OO g(s)nidsdz + (DGP — Ip) /O 1 013w — ) gy, (3.16)

Second, we select d5 small enough so that

1
5 - 556(65) > 0.

Third, we choose §4 small enough so that

55Ip90

1
9 — 546(84) >0 and 5 — 540(64) — (556(85) > 0.

Then, we select 3 small enough so that
0.
23 — d3c(eg) >0 and 4TG — d3¢(e3) > 0.

Next, we choose 2 small enough so that

551;390
2

— 021, — d4c(e4) >0 and % — d9c(eg) — d3¢(eg) > 0.
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Finally, we select §; small enough so that

304G
2

dol
03D — (516(61) > 0, — 001G — (526(62) — 530(63) >0 and % — 510(61) > 0.

From the above, we deduce that there exist positive constants C; and Cy such that (3.16)) becomes

1 p+4oo 1
L'(t) <—-CiE(t) + CQ/O /0 g(s)n?(z, s)dsdx + <lz;p — Ip> /0 0t(Bw — Y)pedz.  (3.17)

Now, we estimate the second term in the right hand side of (3.17)). This is the main difficulty in
the treating of the infinite memories. To overcome this difficulty, we have the following lemma:

Lemma 3.7 For any €y > 0, there exist positive constants ¢ such that, we have the following

inequalities:

L +o00
G'(eoE(t))/o /0 g(s)n2dsdz < —cE'(t) + ceoE(t)G (eo B(t)). (3.18)

Proof. The proof of this lemma is similar to the proof of Lemma 3.11 in [6] and is omitted.

Now, going back to the proof of Theorem multiplying (3.17) by G'(eoE(t)), using (3.18)),
we obtain

G'(e0E(t))L'(t) < — (c — ce0) E(t)G' (0 E(t)) — cE' (1)
1
+ <lép - Ip> G’(eoE(t))/O 0t (3w — ) pd. (3.19)

Choosing €g small enough, we have

1
G'(eoE(t))L (t) + cE'(t) < — cE(t)G (o E(t)) + (12;) — Ip> G’(eoE(t))/O Pt(3w — Y)zed.
(3.20)
Let
F(t) = G'(e E())L(t) + cE(t) ~ E(t),
because L(t) ~ E(t) and G'(eoE(t)) is non-increasing. Using (3.20), we have
1
F/(1) < —cE)G (cB() + <%p _ 1p> G (e E(1) /O or(Bw— P)ydr.  (3.21)

Next, to estimate the last term of (3.21]), we define the second-order energy by

E(t) = E(U(t)),
where E(U(t)) = E(t)(E(t) is defined by (2.9))). A simple calculation (as for (3.1])) implies that

=/ L 1 L +eo ! 2
E'(t) = —48 | wydx + 3 g (s)nzdsdx <0. (3.22)
0 o Jo

Now, we proceed as in [6] to establish the following lemma.
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Lemma 3.8 For any € > 0, we have the following inequalities:

(%ﬂ 1 ) /0 (3w — ) uedde <eB(1)

L “+o00 L “+00
e ( [ [ stntasae— [T [ gsizasas
0 0 0 0

Proof. By recalling that gy = fo s)ds, we have

(5) B Lot

g
D (o.)
ﬁp / o /+ )Bw — ) g (t — s)dsdz.  (3.24)

N———

Using Young’s and Hélder’s inequalities, we obtain, for all € > 0,

+oo

1 “+o00
Ot $)npedsde < c/ \got]/ 9(8)|nzt|dsdx
0 0 0 0
1 c 1 +oo 2
< ce/ d:z+ / </ g(s )nztds> dz
0 46
+oo
< ce/ 2d / / nwtdsd$

‘p +oo
5 t) + c(e / / (5)n2,dsdz.

On the other hand, integrating by parts, exploiting ({2.3]), (2.4)) and using Young’s and Holder’s
inequalities, we get

+o0 Lp _ +oo
/ (Pt/ )(Bw — )t (t — s)dsda = / ‘Pt/ ) (Mt + Nws — Nat)dsd

+oo
= / (pt/ nxdsdﬂj
+oo
< fE —c(e / / dsd$

Finally, adding above two equations, the proof is completed.
Now, going back to the proof of Theorem using (3.21]) and choosing € small enough, we
obtain

F/(t) < —cB)G (e B()) + ¢ (o (1) < / / T sdsda — / / o dsdx>

Using (3.1]) and the fact that G'(e9E(t)) is non-increasing, we have

L +oco
Et)G (eE(t)) < —cG'(eoE(0))E'(t) — cF'(t) + cG/(eQE(t))/O /0 g(s)n2,dsdz. (3.25)
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Next, we estimate the last term in (3.25)). Similarly to the case of fOL 0+°° g(s)n?,dsdz in Lemma

(for fOL 0+°° g(s)n?,dsdz instead of fOL 0+°° g(s)n2dsdz, we get, using (2.10) and (3.22)),

L +oo B
G'(eOE(t))/O /0 g(s)n2,dsde < —cE'(t) + ceoE(t)G (e E(t)). (3.26)

Then, (3.25) and (3.26]) with ¢y chosen small enough imply that

E()G' (eE(t)) < —cG'(eoE(0))E' () — cF'(t) — cE'(1). (3.27)

Recalling the fact that F(t) ~ E(t) and FE(t)G'(egE(t)) is non-increasing, we arrive at, for all
T € Ry (Go is defined by (2.12))),

T
GoE(NT < [ Go(B(@)dt < e(G' (0B (0)) + DEO) + cE(0), (3.28)
0
which gives with C' = ¢(G’(eoE(0)) 4+ 1)E(0) +cE(0). This completes the proof of Theorem
Z1
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