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Abstract: Acidic ostreolysin A/pleurotolysin B (OlyA/PlyB, formerly known as ostreolysin (Oly), 
and basic 20 kDa equinatoxins (EqTs) are cytolytic proteins isolated from the edible mushroom 
Pleurotus ostreatus and the sea anemone Actinia equine, respectively. Both toxins, although from 
different sources, share many similar biological activities: (i) colloid-osmotic shock by forming 
pores in cellular and artificial membranes enriched in cholesterol and sphingomyelin, (ii) increased 
vascular endothelial wall permeability in vivo and perivascular oedema, (iii) dose-dependent 
contraction of coronary vessels, (iv) haemolysis with pronounced hyperkalaemia in vivo, (v) 
bradycardia, myocardial ischemia and ventricular extrasystoles accompanied by progressive fall of 
arterial blood pressure and respiratory arrest in rodents. Both types of toxins are haemolytic within 
nanomolar range concentrations, and it seems that hyperkalaemia plays an important role in toxin 
cardiotoxicity. However, it was observed that the haemolytically more active EqT III is less toxic 
than EqT I, the most toxic and least haemolytic EqT. In mice, EqT II is more than 30 times more 
toxic than OlyA/PlyB when applied intravenously. These observations imply that haemolysis with 
hyperkalaemia is not the sole cause of the lethal activity of both toxins. Additional mechanisms 
responsible for lethal action of the two toxins are direct effects on heart, coronary vasoconstriction 
and related myocardial hypoxia. In this review, we appraise the pathophysiological mechanisms 
related to the chemical structure of OlyA/PlyB and EqTs, as well as their toxicity. 
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1. Introduction 

Ostreolysin (Oly) and equinatoxins (EqTs) belong to the group of pore-forming proteins with a 
defined native conformation which, upon an environmental trigger, is changed spontaneously to 
enable formation of a transmembrane pore consisting of several protein monomers [1]. Recently, Oly 
was found to consist of two proteins, ostreolysin A (OlyA) and pleurotolysin B (PlyB) in a 9:1 molar 
ratio, respectively, and with respective ∼15 and ∼59 kDa molecular masses [2]. Both OlyA/PlyB and 
EqT II are characterized structurally by a dominant β-structure scaffold that keeps a constant global 
domain tertiary structure, while the polypeptide elements needed for membrane penetration are 
provided by minor local conformational changes [3,4]. Like other pore-forming toxins, both Oly and 
EqTs bind to the cell membrane by recognising a specific membrane component. EqT II recognises 
the sphingomyelin head group [5], while Oly specifically binds to membrane domains containing 
both sphingomyelin and cholesterol [6]. This binding results in protein oligomerization at the 
membrane surface, and the formation of transmembrane pores, leading to colloid-osmotic 
mechanisms resulting in cell lysis. The aim of this review is to summarise the pathophysiological 
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mechanisms related to the chemical structure of both proteins, and to discuss their toxicity on 
various levels of biological organization. 

2. Ostreolysin A/pleurotolysin B 

2.1. Origin 

Oly was reported to be an acidic, cytolytic 15 kDa protein that was first isolated from the edible 
oyster mushroom Pleurotus ostreatus [7]. This protein was shown to be highly similar to Aa-Pri1, a 
predicted protein from Agrocybe aegerita [8] and similar to Asp-haemolysin from Aspergillus 
fumigatus [9] and the non-haemolytic proteins P16 and P18 from the bacterium Clostridium 
bifermentans [10]. Recently, Oly was reported to consist of two proteins, ostreolysin A (OlyA) and 
pleurotolysin B (PlyB) with membrane-attack complex/perforin (MACPF) domain [11], in a 
respective 9:1 molar ratio and with molecular masses of ∼15 and ∼59 kDa, respectively [2]. These 
proteins form a 13-meric rosette-like structure which has a central hydrophilic pore of about 4-5 nm 
diameter. The opened transmembrane pore is non-selectively permeable to ions and smaller neutral 
solutes, and a colloid-osmotic type mechanism is responsible for its cytolytic effect [11]. 

2.2. Chemical structure and biological properties 

OlyA/PlyB is a pore-forming cytolysin whose primary role in the producing organism is not yet 
clarified. It belongs to the larger group of highly homologous proteins called aegerolysins (Pfam 
PF06355, InterPro IPR009413), currently comprising more than 350 entries in the NCBI databases. 
The structure, putative functional characteristics and occurrence of aegerolysins across the tree of 
life have been reviewed in details elsewhere [12,13]. OlyA/PlyB is specifically expressed during the 
formation of mushroom fruit bodies [7,14]. The complete structure of OlyA/PlyB is not yet solved. 
However, the protein characterisation by means of circular dichroism, UV-absorption and 
fluorescence spectroscopy revealed that, under physiological conditions, OlyA/PlyB adopts a 
monomeric and thermodynamically stable native-like conformation characterized by rigid tertiary 
and predominantly β-sheet secondary structures. This compact native state is necessary for the 
protein binding to cholesterol/sphingomyelin membrane domains [4]. 

Binding to natural and artificial lipid membranes followed by permeabilisation is a common 
feature of many aegerolysins [12]. In line with this, OlyA/PlyB has been reported to induce 
erythrocyte lysis and to be cytotoxic for various cell lines at sub-micromolar concentrations [15]. The 
lytic process starts by recognition of distinctive raft-like membrane microdomains enriched in 
cholesterol and sphingomyelin [6,16]. Due to their important functions in living cells and cell-cell 
interactions [17-19], there is an increasing need for new techniques to study lipid rafts. OlyA/PlyB, 
which recognises specifically the combination of the two main lipid raft components, sphingomyelin 
and cholesterol, is in this regard a very good candidate for a new marker of raft-like membrane 
microdomains [20]. 

2.3. Main pathophysiological effects 

OlyA/PlyB was shown to be toxic and lethal to rodents, with an estimated LD50 of 1170 µg/kg 
when administered by intravenous (i.v.) way [21]. Following i.v. administration of 1 mouse LD50, 
scratching, jumping, respiratory distress, cyanosis, paralysis and death of experimental mice 
generally occur within 3-5 minutes. After i.v. administration of 1 mouse LD50 into rats, OlyA/PlyB 
produced bradycardia, myocardial ischemia and ventricular extrasystoles accompanied by 
progressive fall of arterial blood pressure to the mid-circulatory pressure, leading to death of 
experimental animals [21]. Similar arrhythmias and time-course of arterial blood pressure produced 
by OlyA/PlyB were observed in pharmacologically vagotomised and artificially ventilated rats, 
indicating that vagotomy and hypoxia due to respiratory arrest after administration of this toxin are 
not primarily responsible for its cardiotoxicity [21]. OlyA/PlyB is lytic to human, bovine, sheep and 
rat erythrocytes at nanomolar range concentrations [21,22]. The mechanism responsible for the 
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haemolytic effect of OlyA/PlyB is colloid-osmotic shock due to pore formation in cell membranes 
[22]. In addition, this toxin induces lysis of rat erythrocytes in vivo, as indicated by a significant 
increase in potassium concentration in serum (higher than 10 mM) and the red-coloured appearance 
of blood serum due to release of haemoglobin from damaged erythrocytes [21]. This observation 
was later confirmed by measuring the haemolytic activity on rat erythrocytes using a turbidimetric 
method [21]. Since such high blood potassium concentrations may cause cardiac arrest [23-25], it was 
concluded that hyperkalaemia probably plays an important role in the cardiotoxicity of OlyA/PlyB. 

Respiratory arrest develops within few seconds after OlyA/PlyB administration, and hypoxia is 
a well-known cause of severe arrhythmias. However, arrhythmias also developed in artificially 
ventilated animals after i.v. administration of OlyA/PlyB, suggesting that mechanisms other than 
respiratory arrest are responsible for the cardiotoxic effects [21]. Myocardial hypoxia and cardiac 
arrest may be produced by sudden and significantly reduced blood flow through the coronary 
arteries. Since OlyA/PlyB is able to form pores in biological membranes [22], direct effects on porcine 
coronary arteries were studied. OlyA/PlyB induced a dose-dependent contraction of porcine 
coronary artery rings, as well as of rat aortas [26], and prevented the endothelium-mediated 
relaxation [27]. Contractile effects of OlyA/PlyB are probably due to direct effects on pig coronary 
smooth muscle cells. As revealed by fluorometric measurements, OlyA/PlyB increases the 
intracellular calcium concentration ([Ca2+]i) in smooth muscle A10 and NG108-15 cells, and alter 
their morphology which underlay its cardio- and neuro-toxic effects [28,29]. These effects can cause 
coronary vasoconstriction leading to myocardial ischemia accompanied by arrhythmias and heart 
failure. Pathological examination of main body tissues revealed that OlyA/PlyB induced 
perivascular oedema in the heart and lungs, as well as focal myocardial haemorrhages in rats 
injected with 1 mouse LD50. The mechanism underlying oedema and myocardial haemorrhages is a 
damage of endothelial cells, both in vitro and in vivo, as revealed by histological examination of 
tissues [27]. 

The biochemical properties and biological effects of OlyA/PlyB are summarised in Table 1. 

2.4. Biological use 

OlyA/PlyB binds with high affinity to cholesterol and cholesterol/sphingomyelin-rich 
membrane domains in human urothelial cancer cells, and produces necrotic cell death [30]. 
Selectivity of OlyA/PlyB is based on the cholesterol and cholesterol/sphingomyelin-rich membrane 
domains in urothelial cancer cells, in contrast to normal urothelial cells. Fluorescent-labelled 
OlyA-mCherry has been utilised as a highly specific probe to visualise cholesterol/sphingomyelin 
rich membrane microdomains in living and fixed cells, and to study membrane trafficking [31]. 

3. Equinatoxins 

3.1. Origin 

Isolation of equinatoxin (EqT), a lethal protein from Actinia equina L., was first described by 
Ferlan and Lebez [32]. Then, in 1988, isolation of three isotoxins (EqT I, EqT II and EqT III) was 
reported with mouse LD50 of 23, 35 and 83 µg/kg, respectively [33]. 

3.2. Chemical structure and biological properties 

EqTs are cytolytic water-soluble proteins that readily interact with cell and artificial lipid 
membranes [33]. It has been shown that, in bovine lactotrophs, EqT II induces a rapid increase in 
[Ca2+]i by the formation of Ca2+ permeable ion channels in lipid bilayers [35]. The composition could 
be resolved only after eludication of the crystal structure of EqT II [3]. This was the first resolved 
structure of a eukaryote pore-forming protein. EqT II is a single-domain protein based on a 12 strand 
β-sandwich fold with a hydrophobic core and a pair of α-helices, each of which is associated with the 
face of a β-sheet. In biological and artificial membranes, three to four EqT II molecules oligomerize 
and create cation-selective pores [36]. A detailed mechanism of pore formation by EqTs was 
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described and reviewed by Anderluh et al. [37,38]. The high affinity of EqT II for membrane 
sphingomyelin makes it a suitable molecule for sensing membrane microdomains [20] and for 
membrane reorganization [39]. Recently, a neutron reflection study reveals new insight related to 
the binding process of EqT II into the plasma membrane. Thus, it was reported that EqT II binds in 
several distinct orientations which depend on membrane lipid composition [40]. Interestingly, EqT II 
exists on the cell surface as a mixture of oligomeric species including monomers, dimers, tetramers 
and hexamers, instead of a unique oligomeric form [41]. 

Table 1. Biochemical properties and biological effects of OlyA/PlyB. 

Biochemical properties Reference

Molecular mass (kDa) 
15 (OlyA) – 59 (PlyB) 

molar ratio 9:1 
[11]
[34] 

pI 5.0 [7] 
Molecular targets Cholesterol and sphingomyelin [6] 

Activity 
Pore formation 

[22]
[2]

[34] 
Involvement in fructification 

of oyster mushroom 
[7]

[14] 
Effects in vivo 
LD50 (µg/kg mouse) 1170 [21] 

Circulation, heart (rat) 
Progressive drop of arterial blood pressure 

[21] Bradycardia, myocardial ischaemia 
Ventricular extrasystoles 

Blood (rat) 
Haemolysis 

Hyperkalaemia ([K+] > 10 mM) 
[21] 

Effects on isolated organs 
Rat aorta 

Increase in aortic ring tension 
[26] 

Porcine coronary artery [27] 
Cellular and subcellular effects 
Human, bovine, sheep erythrocytes Haemolysis (64 nM Oly) [22] 
Human umbilical vein endothelial cells Toxicity (ED50 = 2.2 µg/mL Oly) 

[26] 
Chinese hamster lung fibroblasts Toxicity (ED50 = 1.3 µg/mL Oly) 
A10 smooth muscle cells  Increase in [Ca2+]i (≥ 14 nM OlyA/1.56 nM PlyB) [29] 

NG 108-15 cells 
Increase in [Ca2+]i (≥ 7 nM OlyA /0.78 nM PlyB) 

[28] Cell swelling, plasma membrane blebbing 
(≥ 700 nM OlyA /78 nM PlyB) 

3.3. Main pathophysiological effects 

Cardiorespiratory arrest in rats caused by EqT was first described by Sket et al. [42] but, at that 
time, the underlying mechanism was not fully understood. In vitro studies revealed that EqT (80-200 
ng/mL) increases the permeability and resistance of the lung vasculature and produces, at 
concentrations higher than 150 ng/mL, interstitial and alveolar pulmonary oedema [43]. At low 
concentrations (0.1-3 µg/mL), EqT induces a transient negative inotropic effect followed by a 
long-lasting positive inotropic effect in isolated guinea pig atrium. It was proposed that the 
formation of prostaglandin E2 is responsible for this effect, since it could be inhibited by 
indomethacin, a well-known inhibitor of prostaglandin synthesis [44]. The positive inotropic effect 
described by these authors was also seen in experiments performed on isolated guinea pig hearts 
using EqT II [45], but only when the toxin had been applied at low concentrations (picomolar range). 
Higher concentrations of EqT II caused a pronounced negative inotropic effect. Cardiorespiratory 
effects, similar to those produced by EqT [42], were later confirmed using EqT II [46] and EqT III [47]. 
EqT II causes negative inotropic and chronotropic effects such as bradycardia, action potential 
conduction disturbances and extrasystoles. Similarly, the lethal dose of EqT III also produces 
arrhythmias, a drop of arterial blood pressure and cardiac arrest. The two isotoxins are haemolytic, 
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and it is well known that the hyperkalaemia caused by the lysis of erythrocytes can produce serious 
arrhythmias leading to cardiac failure. A detailed study of the role of haemolysis in EqT lethality 
revealed an only marginal role of hyperkalaemia in the cardiotoxic effects of these toxins [47]. This is 
in agreement with data showing that the more toxic EqT II is less haemolytic than EqT III. As EqT III 
is the least toxic but causes the most pronounced hyperkalaemia, it seems that the elevation of 
plasma K+ concentration is not the primary cause of cardiorespiratory arrest. In vivo, EqT II and EqT 
III cause similar alterations of electrocardiogram (ECG), breathing and blood pressure, indicating 
that the same cardiotoxicity mechanism may be involved. 

EqTs belong to the group of pore forming toxins that enable passage of cations, mainly Ca2+, 
through phospholipid bilayers, including the plasma membrane. Therefore, another possible 
pathophysiological mechanism of the cardiotoxicity may be a decreased coronary perfusion due to 
vasoconstriction. Vasoconstrictor effects of EqT II may also include endothelin-dependent pathway 
[48]. EqT II-triggered endothelin release is probably one of the mechanisms involved in the lowering 
of coronary flow induced by this toxin [49], since endothelin is well known to activate L-type 
calcium channels in smooth muscle cells. As EqTs form cation selective pores in cellular membranes, 
a direct effect on smooth muscle cells in the vascular wall may also play a major role. To answer this 
question, porcine coronary arteries were exposed to EqT III (1-100 nM), and the resting tension of 
smooth muscle as well as the maximum force of contractions were measured. The results revealed 
that EqT III also directly triggers contraction of isolated porcine coronary arteries at nanomolar 
concentrations. This mechanism probably explains most of the EqT III cardiotoxic effects [47]. On 
Langendorff rat heart preparations, EqT II (0.1-10 nM) was reported to cause arrhythmia as well as 
decreased coronary perfusion rate and left ventricular pressure in a dose-dependent manner. At 
higher concentrations, EqT II produces cardiac arrest within a few seconds. As in the rat heart, EqT II 
also decreases coronary flow in the porcine heart. This effect could be abolished by an antagonist of 
L-type voltage-dependent calcium channels (i.e. CaV1.2 channels) such as nicardipine. Additionally, 
it was shown that EqT II increases the tension of spontaneous contractions and induced long-lasting 
contracture of guinea pig taenia caeci smooth muscle, accompanied by a marked increase in [Ca2+]i 
[50]. After i.v. administration, EqT II first enters into the right atrium and then the right ventricle of 
the heart before reaching the pulmonary circulation. EqTs have high binding affinity for 
sphingomyelin-rich cell membranes [5,51-53] and thus rapidly bind to blood cells and endothelium. 
In order to assess the possibility that a sufficient concentration of unbound EqT II is still present in 
the arterial blood and in the systemic circulation to produce direct cardiotoxic effects, perfusion 
experiments were performed on isolated rat lungs. After in vitro perfusion of the lung with a solution 
containing 100 nM EqT II, the toxin concentration in perfusates ranged between 0.8 and 5 nM. 
Effluent from the lungs contained enough EqT II to produce cardiotoxic effects on isolated 
Langendorff heart, as described previously [46]. This is in accordance with the findings that the 
lethal effects of EqT II are mainly attributed to its vasoconstrictor effects and direct cardiotoxicity. 
The mechanism of EqT II-induced respiratory arrest is not yet sufficiently explained. After i.v. 
administration of EqT I, EqT II or EqT III, the respiratory activity stops within a few seconds. It was 
shown, at least for EqT I, that electrical stimulation of the phrenic nerve triggers normal diaphragm 
muscle contraction indicating that neuromuscular transmission and function are unaffected by the 
toxin. Because respiratory arrest causes cardiac hypoxia, the alterations in blood pressure and 
electrical activity, similar to those observed after administration of one mouse LD50 of EqTs, could 
cause cardiac hypoxia. However, experiments performed on artificially ventilated animals, showed 
that artificial ventilation did not prevent the changes in ECG and blood pressure. Therefore, hypoxia 
was not confirmed as a primary cause for cardiotoxicity. Respiratory arrest may also be caused by 
respiratory reflexes activated through J-receptors in lung parenchyma, which are strongly 
stimulated under pathophysiological conditions like pulmonary oedema. EqTs are relatively large 
molecules (with molecular masses of around 20 kDa) and, due to their size, it is unlikely that they 
could pass the brain-blood barrier unless endothelial damage gives access to the neurons of the 
respiratory centre in the medulla oblongata. Recent preliminary results have shown that EqT II causes 
swelling and lysis of endothelial cells, an effect that may give toxin access to neuronal cells. Direct 
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effects of EqTs on respiratory centres cannot be excluded since EqT II has been reported to produce 
swelling of differentiated neuroblastoma NG108-15 cells [54]. Moreover, axonal swelling at the node 
of Ranvier of myelinated nerve fibres has also been observed in vitro after application of EqT II [55]. 

3.4. Biological use 

Despite the fact that low concentrations of EqTs are lethal, several studies have been reported 
on their effects on cancer cells [56-58]. Furthermore, they have been tested as immunotoxins 
targeting at Giardia duodenalis [59]. Their use as molecular probes for sphingomyelin and 
cholesterol-rich membrane domains seems to be more promising [20,60]. Finally, EqT II has been 
shown to inhibit endocytosis [39] and to cause membrane reorganization [39,61]. Development of 
immunotoxins targeting specific cells may be the most promising future use of equinatoxins. 

The biochemical properties and biological effects of EqT II are summarised in Table 2. 

Table 2. Biochemical properties and biological effects of EqT II. 

Biochemical properties Reference
Molecular mass (kDa) 20 [33] 
pI 10.5 [33] 
Molecular targets Sphingomyelin [36] 

Activity Pore formation 
[36]
[35] 

Effects in vivo 
LD50 (µg/kg mouse) 35 [33] 
Circulation, heart (rat) Bradycardia, hypotension, extrasystoles [62] 
Blood (rat) Platelet aggregation [62] 
Respiration (rat) Respiratory arrest [42] 
Effects on isolated organs 
Rat skeletal muscle Spontaneous twitches (10 nM) [63] 

Rat heart (Langendorff preparation) 
Drop in perfusion rate, decreased left ventricular 

pressure, arrhythmia (0.1-10 nM) 
[46] 

Porcine coronary artery Vasoconstriction (EC50 = 101.1 nM) [48] 
Cellular and subcellular effects 

Human erythrocytes 
Haemolysis 

[36] 
Pore formation / r=1.1 nm (50 ng/mL) 

Rabbit Platelets Aggregation (0.01 ng/mL) [64] 
V-79-379 A cell line Toxicity (ED50 = 17 ng/mL) [65] 

Bovine lactotrophs 
Planar lipid bilayers 

Toxicity (230 nM) 
Ion channel formation (650 nM) 

Increase in [Ca2+]i (230 nM) 
[35] 

NG 108-15 cells Cell swelling, increase in [Ca2+]i [54] 
ECV-304 cells Cell swelling, lysis (1-10 nM) [49] 
Taenia caeci smooth muscle cells Increase in [Ca2+]i, muscle contraction (10-500 nM) [50] 

4. Conclusions 

The results of in vivo and in vitro studies indicate that hyperkalaemia that appears after the 
cytolytic action of OlyA/PlyB on blood and other exposed cells is mainly responsible for its 
cardiotoxic action. Coronary constriction and possible direct effect of OlyA/PlyB on cardiac tissue 
are additional mechanisms of cardiotoxicity. Besides direct cardiotoxic effects, OlyA/PlyB also 
damages endothelial cells and causes interstitial and alveolar oedema in vivo. This, together with 
coronary spasm, further amplifies tissue hypoxia and probably contributes to the respiratory arrest. 
All these mechanisms play an important role in the cardiorespiratory toxicity of OlyA/PlyB. On the 
other hand, EqTs are haemolytic, and the most studied EqT II also produces hyperkalaemia, but its 
effects are faster and hyperkalaemia seems to have a smaller effect on cardiac function than the 
direct action of the toxin. Both toxins have proven to be good tools to study cell membrane function 
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as they bind to specific membrane domains. As potent cytotoxic agents they may be useful for 
designing new therapeutic substances. EqT II has already been considered as a potent immunotoxin. 
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