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Abstract: The study of different forms of preconditioners for solving a system of nonlinear equations,
by using Newton’s method, is presented. The preconditioners provide numerical stability and rapid
convergence with reasonable computation cost, whenever chosen accurately. Different families of
iterative methods can be constructed by using a different kind of preconditioners. The multi-step
iterative method consists of a base method and multi-step part. The convergence order of base method
is quadratic and each multi-step add an additive factor of one in the previously achieved convergence
order. Hence the convergence of order of an m-step iterative method is m + 1. Numerical simulations
confirm the claimed convergence order by calculating the computational order of convergence. Finally,
the numerical results clearly show the benefit of preconditioning for solving system of nonlinear
equations.

Keywords: systems of nonlinear equations; nonlinear preconditioners; multi-step iterative methods;
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When computing simple roots of a system of nonlinear equations, Newton’s method [1–4] is a
classical, well studied procedure that offers quadratic convergence, under suitably mild regularity
assumptions. Many researchers have proposed higher order efficient iterative method [5–12] for
solving system of nonlinear equations. Recently, some authors have constructed multi-step iterative
methods [13–15] for solving system of nonlinear equations. The main benefit of multi-step iterative
methods is hidden in the multi-step part. Because, the Jacobian factorization information from the
base method is utilized in the multi-step part repeatedly to enhance the convergence order at the
cost of the solution of lower and upper triangular systems and a single evaluation of the system of
nonlinear equations. X. Wu [16] wrote a note on the improvement of Newton’s method for systems
of nonlinear equations. In his note, the author introduced the idea of nonlinear preconditioners
and showed that the improved Newton method enjoyed the quadratic convergence. Jose et al. [17]
used the idea of nonlinear preconditioning to improve the Newton method, for solving the system
of nonlinear equations with known multiplicities. Aslam et al. [18] proposed iterative methods for
solving nonlinear equations with unknown multiplicity with the help of nonlinear preconditioners.
In the another article Aslam and his co-researcher [19] proposed a preconditioned double Newton
method with quartic convergence order for the solving system of nonlinear equations. What they have
proposed is the following. Let

F(x) = [ f1(x), f2(x), · · · , fn(x)]T = 0 (1)
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be the system of nonlinear equations and let us suppose that only simple roots are present. Here
x = [x1, x2, · · · , xn]T . Assume G(x) = [g1(x), g2(x), · · · , gn(x)]T is a function which is non-zero
everywhere in its definition domain. We define a new function

Q(x) = G(x)� F(x) = [[G(x)]] F(x) = [[F(x)]]G(x), (2)

where � is the element-wise multiplication and [[·]] represent the diagonal matrix, having as main
diagonal its argument. The first order Fréchet derivative of (2) can be computed as

Q′(x) = [[F(x)]]G′(x) + [[G(x)]] F′(x)

= [[G(x)]]
(

F′(x) + [[F(x)]] [[G(x)]]−1 G′(x)
)

. (3)

The application of Newton method to (2) gives

xk+1 = xk −Q′(xk)
−1 Q(xk)

= xk −
(

F′(x) + [[F(x)]] [[G(x)]]−1 G′(x)
)−1

F(x).
(4)

The convergence order of (4) is quadratic, because the considered scheme is the Newton method for
solving the preconditioned system of nonlinear equations Q(x) = 0. If we take G(x) = exp(βββ� x)
then (4) can be written as

xk+1 = xk −
(
F′(x) + [[βββ� F(x)]]

)−1 F(x), (5)

where βββ = [β1, β2, · · · , βn]
T .

1. Our proposal

In this section, we develop some preconditioned iterative methods for solving systems of nonlinear
equations. We generalize the idea of preconditioning in such a way that the quadratic convergence
will be guaranteed, under the usual regularity requirements. If we replace G(x) by exp(G(x)) in (4),
then we obtain

xk+1 = xk −
(

F′(xk) + [[F(xk)]]G′(xk)
)−1

F(xk). (6)

Notice that G′(x) is a matrix that could be a diagonal matrix, but also a generic dense matrix. We
proposed the following generalization of (6)

xk+1 = xk −
(

F′(xk) + M1(xk) [[F(xk)]] M2(xk)
)−1

F(xk), (7)

where M1(x) and M2(x) are matrices of size n. In the next development, we see that [[F(x)]] is not the
only option. Let p(x) be a scalar function and let us define the following preconditioned system of
nonlinear equations

Q(x) = p(x)� F(x) = [p(x) f1(x), p(x) f2(x), · · · , p(x) fn(x)]T . (8)

The first order Fréchet derivative of (8) can be computed as

Q′(x) = p(x)� F′(x) + F(x)∇p(x)T

Q′(x) = p(x)�
(

F′(x) + F(x)
(
∇p(x)T

p(x)

)) (9)
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where p(x) � F′(x) means the element-wise product of p(x) with each element of F′(x) and / in(
∇p(x)T

p(x)

)
is element-wise division. The application of the Newton method to (8) gives

xk+1 = xk −
(

F′(xk) + F(xk)

(
∇p(xk)

T

p(xk)

))−1

F(xk). (10)

Again, if we replace p(xk) by exp(p(xk)) in (10), then we have

xk+1 = xk −
(

F′(xk) + F(xk)∇p(xk)
T
)−1

F(xk). (11)

The following generalization of (11) can be obtained

xk+1 = xk −
(

F′(xk) + F(xk)V(xk)
T
)−1

F(xk) and (12)

xk+1 = xk −
(

F′(xk) + V(xk) F(xk)
T
)−1

F(xk), (13)

where V(xk) = [v1(xk), v2(xk), · · · , vn(xk)]
T . Other possibilities could be

xk+1 = xk −
(

F′(xk) + M1(xk) F(xk)V(xk)
T M2(xk)

)−1
F(xk) and (14)

xk+1 = xk −
(

F′(xk) + M1(xk)V(xk) F(xk)
T M2(xk)

)−1
F(xk). (15)

Further, we write the multi-step version of the proposed generalizations

Base method −→


x0 = initial guess

A φφφ1 = F (x0)

x1 = x0 −φφφ1

Multi-step part→



for j = 2, m

A φφφj = F
(
xj−1

)
xj = xj−1 −φφφj

end

x0 = xm ,

(16)

where

A =



Iterative method

F′(x) + M1(x) [[F(x)]] M2(x) (7)

F′(x) + F(x)V(x)T (12)

F′(x) + V(x) F(x)T (13)

F′(x) + M1(x) F(x)V(x)T M2(x) (14)

F′(x) + M1(x)V(x) F(x)T M2(x) (15)

.
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The famous Newton multi-step iterative method can be written as

Base method −→


x0 = initial guess

F′(x0)φφφ1 = F (x0)

x1 = x0 −φφφ1

Multi-step part→



for j = 2, m

F′(x0)φφφj = F
(
xj−1

)
xj = xj−1 −φφφj

end

x0 = xm .

(17)

2. Convergence Analysis

In this section we gice in detail the proofs of convergence order of (16) only for m = 2, while for
the case m ≥ 3 we use mathematical induction.

Theorem 2.1. Let F : Γ ⊆ Rn → Rn be sufficiently Frechet differentiable on an open convex neighborhood
Γ of x∗ ∈ Rn with F (x∗) = 0, det (F′ (x∗)) 6= 0, and with well defined quantities ||M1(xk)||, ||M2(xk)||,
||V(xk)||. Then the sequence {xk} generated by (16) converges to x∗ with local order of convergence at least
three for m = 2. Furthermore, the following error inequality

||ek+1|| ≤ ||L|| ||ek||3 (18)

is satisfied, where ek = xxxk − x∗, ek
p =

p times︷ ︸︸ ︷
(ek, ek, · · · , ek), ek = [(ek)1, (ek)2, · · · , (ek)n]

T and

||L|| =



Iterative method(
2||C2 ||2 + 3||C2 || ||M1(x0)|| ||M2(x0)||+ (||M1(x0)|| ||M2(x0)||)2

)
||e0 ||3 (7)(

2||C2 ||2 + 3||C2 || ||V(x0)||+ ||V(x0)||2
)
||e0 ||3 (12)(

2||C2 ||2 + 3||C2 || ||V(x0)||+ ||V(x0)||2
)
||e0 ||3 (13)(

2||C2 ||2 + 3||C2 || ||M1(x0)|| ||M2(x0)|| ||V(x0)||+ (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)
||e0 ||3 (14)(

2||C2 ||2 + 3||C2 || ||M1(x0)|| ||M2(x0)|| ||V(x0)||+ (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)
||e0 ||3 (15)

. (19)

Proof. The qth Frechet derivative of F at v ∈ Rn, q ≥ 1, is the q− linear function F(q) (v) :

q times︷ ︸︸ ︷
RnRn · · ·Rn

such that F(q) (v)
(
u1, u2, · · · , uq

)
∈ Rn. The Taylor’s series expansion of F (x0) around x∗ can be

written as

F (x0) = F (x∗ + x0 − x∗) = F (x∗ + e0) ,

= F (x∗) + F′ (x∗) e0 +
1
2!

F′′ (x∗) e0
2 +

1
3!

F(3) (x∗) e0
3 + · · · ,

= F′ (x∗)
(

e0 +
1
2!

F′ (x∗)−1F′′ (x∗) e0
2 +

1
3!

F′ (x∗)−1F(3) (x∗) e0
3 + · · ·

)
,

= C1

(
e0 + C2 e0

2 + C3 e0
3 + O

(
e0

4
))

, (20)

where C1 = F′ (x∗) and Cs =
1
s! F′ (x∗)−1F(s) (x∗) for s ≥ 2. From (20 ), we can calculate the Fréchet

derivative of F as

F′ (x0) = C1

(
I + 2C2 e0 + 3C3 e0

2 + 4C3 e0
3 + O

(
e0

4
))

, (21)
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where I is the identity matrix. Before to proceed further, first we compute the norm bounds for

B(x) ∈
{

M1(x) [[F(x)]] M2(x), F(x)V(x)T , V(x) F(x)T , M1(x) F(x)V(x)T M2(x), M1(x)V(x) F(x)T M2(x)
}

.

B(x0) = M1(x0) [[F(x0)]] M2(x0)

= M1(x0) [[C1

(
e0 + C2e2

0 + O
(

e3
0

))
]] M2(x0)

||B(x0)|| ≤ ||C1|| ||M1(x0)|| ||M2(x0)|| ||e0||

(22)

B(x0) = F(x0)V(x0)
T

= C1

(
e0 + C2e2

0 + O
(

e3
0

))
V(x0)

T

||B(x0)|| ≤ ||C1|| ||V(x0)|| ||e0||

(23)

B(x0) = V(x0) F(x0)
T

= V(x0)
(

C1

(
e0 + C2e2

0 + O
(

e3
0

)))T

||B(x0)|| ≤ ||C1|| ||V(x0)|| ||e0||

(24)

B(x0) = M1(x0) F(x0)V(x0)
T M2(x0)

= M1(x0)
(

C1

(
e0 + C2e2

0 + O
(

e3
0

)))
V(x0)

T M2(x0)

||B(x0)|| ≤ ||C1|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| ||e0||

(25)

Notice that all the expressions for B(x) are of order e and this is essential in proving the quadratic
convergence.

B(x0) = M1(x0)V(x0) F(x0)
T M2(x0)

= M1(x0)V(x0)
(

C1

(
e0 + C2e2

0 + O
(

e3
0

)))T
M2(x0)

||B(x0)|| ≤ ||C1|| ||M1(x0)|| ||M2(x0)|| ||V(x0)|| ||e0||

(26)

A = F′(x0) + B(x0)

= C1

(
I + 2C2 e0 + C−1

1 B(x0) + O(e2
0)
)

A−1 =
(

I− 2C2 e0 −C−1
1 B(x0) + O((e0)i1 (e0)i2)

)
C−1

1

(27)

The explanation to use the notation O((e0)i1 (e0)i2) is that the quadratic terms are not of the form e2
0

because of B(x0). By using (27), we deduce

A−1F(x0) =
(

I− 2C2 e0 −C−1
1 B(x0) + O((e0)i1 (e0)i2)

)
C−1

1 C1

(
e0 + C2e2

0 + O
(

e3
0

))
= e0 + C2e2

0 − 2C2e2
0 −C−1

1 B(x0)e0 + O
(
(e0)i1 (e0)i2 (e0)i3

)
e1 = e0 − e0 + C2e2

0 + C−1
1 B(x0)e0 + O

(
(e0)i1 (e0)i2 (e0)i3

)
e1 = C2e2

0 + C−1
1 B(x0)e0 + O

(
(e0)i1 (e0)i2 (e0)i3

)
(28)
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The error equation e1 tells that the order of convergence of base method of (16) is quadratic because
C−1

1 B(x0)e0 is a second order term in e0. By using (28), (22), (23), (24), (25) and (26) , we get

F(x1) = C1

(
e1 + O

(
e2

1

))
= C1

(
C2e2

0 + C−1
1 B(x0)e0 + O

(
(e0)i1 (e0)i2 (e0)i3

))
e2 = e1 −A−1F(x1)

= C2e2
0 + C−1

1 B(x0)e0 −
(

I− 2C2 e0 −C−1
1 B(x0) + O((e0)i1 (e0)i2)

)(
C2e2

0 + C−1
1 B(x0)e0

)
+ O

(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)
= 2C2

2e3
0 + 2C2e0C−1

1 B(x0)e0 + C−1
1 B(x0)C2e2

0 + C−1
1 B(x0)C−1

1 B(x0)e0 + O
(
(e0)i1 (e0)i2 (e0)i3 (e0)i4

)
,

||e2|| ≤ 2||C2||2||e0||3 + 3||C2|| ||C1||−1||B(x0)|| ||e0||2 + ||C1||−2||B(x0)||2||e0||,

||e2|| ≤



Iterative method(
2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)||+ (||M1(x0)|| ||M2(x0)||)2

)
||e0||3 (7)(

2||C2||2 + 3||C2|| ||V(x0)||+ ||V(x0)||2
)
||e0||3 (12)(

2||C2||2 + 3||C2|| ||V(x0)||+ ||V(x0)||2
)
||e0||3 (13)(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| ||V(x0)||+ (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)
||e0||3 (14)(

2||C2||2 + 3||C2|| ||M1(x0)|| ||M2(x0)|| ||V(x0)||+ (||M1(x0)|| ||M2(x0)|| ||V(x0)||)2
)
||e0||3 (15)

(29)

The error inequality (29) completes the proof.

The proof of convergence when m ≥ 3 can be carried via mathematical induction. Suppose the
propose the iterative method (16) has convergence order s when m = s− 1. The error inequality for
(s− 1)-step iterative method (16) can be written as

||es−1|| ≤ ||N1|| ||e0||s, (30)

where ||N1|| is finite. The error equation for m = s is

es = es−1 −A−1 F(xs−1)

= es−1 −
(

I− 2C2e0 −C−1
1 B(x0) + O

(
(e0)i1 (e0)i2

))
es−1

||es|| ≤ 2||C2|| ||N1|| ||e0||s+1 + ||C1||−1||B(x)|| ||N1|| ||e0||s

||es|| ≤ ||N2|| ||e0||s+1,

(31)

where ||N2|| is finite.

3. Numerical simulations

Let ααα be a simple root of system of nonlinear equations F(x) = 0. We adopt the following
definition of computational order of convergence

CCO =
log
(
||F(xk+1)||∞/||F(xk)||∞

)
log
(
||F(xk)||∞/||F(xk−1)||∞

) . (32)

To check the performance of our proposed iterative methods, we solve three problems.
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Problem 1 =

{
x2

i xi+1 − 1 = 0, i = 1, 2 · · · , n− 1

xn x1 − 1 = 0, i = n

Problem 2 =


F1(x) = (3− 0.5 x1) x1 − 2 x2 + 1

F2(x) = (3− 0.5 xn) xn − 2 xn−1 + 1

Fi(x) = (3− 0.5 xi) xi − xi−1 + 2 xi+1 + 1, i = 2, 3 · · · , n− 1

Problem 3 =


F1(x) = 10 x1 + sin(x1 + x2)− 1 = 0

F2(x) = 8 x2 − cos2(x3 − x2)− 1 = 0

F3(x) = 12 x3 + sin(x3)− 1 = 0

Tables 1, 2, and 3 clearly show that the claimed orders of convergence are in agreement with
computational orders of convergence for a given number of steps. The simulation times in each Table
for all the conducted tests are almost equal. In Table 3, we have used full matrices as preconditioners
because the system of nonlinear equations is small. But for a large system of nonlinear equations,
it is not recommendable to use full matrices as a preconditioners and reason is clear, since we get a
penalty in terms of computational cost. One of the main targets of the present article is to explore
different possibilities of preconditioning, by keeping the convergence order. In our analysis, we found
that for solving system of nonlinear equations, the iterative method (7) is the most efficient when we
use the preconditioning matrices M1(x) and M2(x) as diagonal matrices. It is also observed that the
leading constant coefficients of preconditioners should be less one in magnitude to get better accuracy.
The proposed iterative methods show better accuracy compared with multi-step Newton method for
almost all tests, when considering the previous three model problems.

Table 1. Problem 1: Initial guess: xi = 15/10, n = 200, Iter= 5

Method (7) Method (17)

M1(x) M2(x) m ||F(x)||∞ CCO ||F(x)||∞ CCO

I [[−sin(x)/(1.1 + cos(x))]] 1 2.97e− 23 2.0 3.20e− 7 1.99

I −I 2 1.95e− 127 4.0 4.15e− 28 3.0

I [[−2 exp(−2x)]] 3 7.20e− 89 4.0 5.56e− 80 4.0

I [[−exp(−x)]] 4 3.21e− 221 5.0 3.20e− 185 5.0

4. Conclusions

The computational cost of the classical multi-step Newton method and that of the proposed
iterative methods are substantially tre same, if we do not use dense preconditioners. Indeed, the
iterative method (7) is more effective, when coupled with diagonal preconditioners. The proposed
family of iterative methods has the same convergence order as that of Newton multi-step iterative
method, with almost the same computational cost. The only assumption on the preconditioners is that
they should have finite norms, in their definition domain.

Author contributions: First author established the idea and all other authors contributed equally in
the article.
Conflicts of interest: The authors declare no conflict of interest.
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Table 2. Problem 2: Initial guess: xi = −1, n = 100, Iter= 4

Method (7) Method (17)

M1(x) M2(x) m ||F(x)||∞ CCO ||F(x)||∞ CCO

I [[1/10]] 3 2.33e− 219 4.0 5.92e− 163 4.0

I [[1/10]] 4 4.09e− 511 5.0 1.18e− 388 5.0

I [[1/10 exp(x/10)]] 3 4.92e− 214 4.0 5.92e− 163 4.0

I [[1/10 exp(x/10)]] 4 3.79e− 499 5.0 1.18e− 388 5.0

I [[cosh(x)/(10 + sinh(x))]] 3 3.52e− 264 4.0 5.92e− 163 4.0

I [[cosh(x)/(10 + sinh(x))]] 4 2.77e− 614 5.0 1.18e− 388 5.0

I [[cosh(x)/10]] 3 1.97e− 292 4.0 5.92e− 163 4.0

I [[cosh(x)/10]] 4 7.68e− 677 5.0 1.18e− 388 5.0

I [[sech(x)/10]] 3 1.33e− 200 4.0 5.92e− 163 4.0

I [[sech(x)/10]] 4 4.26e− 469 5.0 1.18e− 388 5.0

I [[cos(x)/3]] 3 3.09e− 267 4.0 5.92e− 163 4.0

I [[cos(x)/3]] 4 2.55e− 623 5.0 1.18e− 388 5.0

I [[
(
1 + x3)/3]] 3 5.71e− 187 4.0 5.92e− 163 4.0

I [[
(
1 + x3)/3]] 4 4.09e− 443 5.0 1.18e− 388 5.0

I [[sinh
(
x2)/10]] 3 7.21e− 217 4.0 5.92e− 163 4.0

I [[sinh
(
x2)/10]] 4 4.16e− 462 5.0 1.18e− 388 5.0

I [[x2/10]] 3 8.41e− 204 4.0 5.92e− 163 4.0

I [[x2/10]] 4 1.13e− 482 5.0 1.18e− 388 5.0
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Table 3. Problem 3: Initial guess: xi = 15/10, n = 3, Iter= 8

Methods (16) Method (17)

Methods M1(x) M2(x) V(x) m ||F(x)||∞ CCO ||F(x)||∞ CCO

(7) R1 I - 1 1.63e− 241 2.0 6.69e− 268 2.0

(7) I R1 - 1 1.34e− 281 2.0 6.69e− 268 2.0

(7) R1 I - 2 1.19e− 6427 3.0 1.74e− 6229 3.0

(7) I R1 - 2 4.27e− 8197 3.0 1.74e− 6229 3.0

(13) I I R2 1 1.49e− 272 2.0 6.69e− 268 2.0

(14) [[F(x)]] I 0.001 R2 1 4.43e− 290 2.0 6.69e− 268 2.0

(14) [[F(x)]] I 0.001 R3 1 2.22e− 283 2.0 6.69e− 268 2.0

(14) [[F(x)]] I 0.001 R4 1 1.25e− 286 2.0 6.69e− 268 2.0

(14) I [[F(x)]] 0.001 R2 1 2.84e− 270 2.0 6.69e− 268 2.0

(14) I [[F(x)]] 0.001 R3 1 3.11e− 270 2.0 6.69e− 268 2.0

(14) I [[F(x)]] 0.001 R4 1 5.34e− 273 2.0 6.69e− 268 2.0

(15) [[−F(x)]] I R5 1 1.36e− 278 2.0 6.69e− 268 2.0

(15) I I R6 1 3.74e− 296 2.0 6.69e− 268 2.0

(15) I I R7 1 4.75e− 300 2.0 6.69e− 268 2.0

(15) I I R8 1 3.73e− 334 2.0 6.69e− 268 2.0

(15) I I R9 1 7.06e− 325 2.0 6.69e− 268 2.0

(15) I I R10 1 5.79e− 303 2.0 6.69e− 268 2.0

R1 = (0.1 exp(0.1 x)) (0.1 exp(0.1 x))T , R2 = [1, 0, 0]T , R3 = [0, 1, 0]T , R4 = [0, 0, 1]T

R5 = 0.001 [−1,−1,−1]T , R6 = 0.001 [1,−1, 1]T , R7 = 0.001 [−1,−1, 1]T , R8 = 0.001 [−1,−1, 2]T

R9 = 0.001 [−1,−2, 1]T , R10 = 0.001 [−2,−1, 1]T ,
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