Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15

Version 1 : Received: 20 January 2017 / Approved: 22 January 2017 / Online: 22 January 2017 (04:56:44 CET)

A peer-reviewed article of this Preprint also exists.

Ma, L.; Li, N.; Zhu, J.; Chen, X. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15. Polymers 2017, 9, 58. Ma, L.; Li, N.; Zhu, J.; Chen, X. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15. Polymers 2017, 9, 58.

Abstract

Surface initiated atom transfer radical polymerization (SI-ATRP) is one of the most versatile technique to modify the surface properties of material. Recent developed metal free SI-ATRP makes such technique more widely applicable. Herein photo-induced metal-free SI-ATRP of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,N- dimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organic-inorganic hybrid materials. SBA-15 based polymeric composite with adjustable graft ratio was obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced adsorption ability for the model compound toluene in aqueous. This procedure provides a low cost, ready availability, and facile modification way to synthesize the polymeric composites without the contamination of metal.

Keywords

polymeric composite; surface initiated atom transfer radical polymerization; photo-induced; living radical polymerization; metal-free atom transfer radical polymerization

Subject

Chemistry and Materials Science, Applied Chemistry

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.