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Abstract 

 Recently two new degree concepts have been defined in graph theory: ev-degree and ve-degree. Also the ev-

degree and ve-degree Zagreb and Randić indices have been defined very recently as parallel of the classical 

definitions of Zagreb and Randić indices. It was shown that ev-degree and ve-degree topological indices can be 

used as possible tools in QSPR researches .  In this paper we define the ve-degree and ev-degree Narumi–Katayama 

indices, investigate the predicting power of these novel indices and extremal graphs with respect to these novel 

topological indices. Also we give some basic mathematical properties of ev-degree and ve-degree Narumi-

Katayama and Zagreb indices. 
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1. Introduction 

 Topological indices have important place in theoretical chemistry. Many topological indices were defined by 

using vertex degree concept. The Zagreb and Randić indices are the most used degree based topological indices 

so far in mathematical and chemical literature among the all topological indices. Very recently, Chellali, Haynes, 

Hedetniemi and Lewis have published a seminal study:  On ve-degrees and ev-degrees in graphs [1]. The authors 

defined two novel degree concepts in graph theory; ev-degrees and ve-degrees and investigate some basic 

mathematical properties of both novel graph invariants with regard to graph regularity and irregularity [1]. After 

given the equality of the total ev-degree and total ve-degree for any graph, also the total ev-degree and the total ve-

degree were stated as in relation to the first Zagreb index. It was proposed in the article that the chemical 

applicability of the total ev-degree (and the total ve-degree) could be an interesting problem in view of chemistry 

and chemical graph theory.  In the light of this suggestion, one of the present author has carried these novel degree 

concepts to chemical graph theory by defining the ev-degree and ve-degree Zagreb and Randić indices [2].  It was 

compared these new group ev-degree and ve-degree indices with the other well-known and most used topological 

indices in literature such as; Wiener, Zagreb and Randić indices by modelling some physicochemical properties 

of octane isomers [2]. It was shown that the ev-degree Zagreb index, the ve-degree Zagreb and the ve-degree 

Randić indices give better correlation than Wiener, Zagreb and Randić indices to predict the some specific 

physicochemical properties of octanes [2]. Also it was given the relations between the second Zagreb index and 

ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree and ve-degree Zagreb 

indices [2]. In this paper we define the ve-degree and ev-degree Narumi–Katayama indices, investigate the 
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predicting power of these novel indices and extremal graphs with respect to these topological indices. Also we 

give some basic mathematical properties of ev-degree and ve-degree Zagreb indices.  

 A graph = ( , ) consists of two nonempty sets 	and 2-element subsets of  namely . The elements of  

are called vertices and the elements of  are called edges. For a vertex , deg	( ) show the number of edges that 

incident to .   The set of all vertices which adjacent to   is called the open neighborhood of  and denoted by ( ).  If we add the vertex  to ( ), then we get the closed neighborhood of , [ ].  
The first and second Zagreb indices [3] defined as follows: The first Zagreb index of a connected graph , defined 

as;  

= ( ) = ∑ deg	( ) =∈ ( ) ∑ (deg( ) + deg	( ))∈ ( ) . 

 And the second Zagreb index of a connected graph , defined as; 

= ( ) = ∑ deg( ) . deg	( )∈ ( )  . 

The authors investigated the relationship between the total π-electron energy on molecules and Zagreb indices [3]. 

For the details see the references [4-6]. Randić investigated the measuring the extent of branching of the carbon-

atom skeleton of saturated hydrocarbons via Randić index [7].  The Randić index of a connected graph G defined 

as; 

= ( ) = ∑ (deg( ) . deg( )) ⁄∈ ( ) . 

We refer the interested reader to [8-10] and the references therein for the up to date arguments about the Randić 

index.   

The forgotten topological index for a connected graph G defined as; 

= ( ) = ∑ deg	( ) = ∑ (deg( ) + deg( ) )∈ ( )∈ ( ) . 

It was showed in [11] that the predictive power of the forgotten topological index is very close to the first Zagreb 

index for the entropy and acentric factor. For further studies about the forgotten topological index we refer to the 

interested reader [11-13] and references therein. 

 

In the 1980s, Narumi and Katayama considered the production of the degrees of vertices 
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= ( ) = deg	( )∈ ( )  

and named it the “simple topological index’’ [14]. Later for this graph invariant, the name ‘’Narumi-Katayama 

index’’ was used in [15-17].  The extremal graphs with respect to  was studied by Gutman and Ghorbani [15] 

, Zolfi and Ashrafi [20].  Some relations between the Narumi-Katayama index and the first Zagreb index were 

introduced in the more recent paper [21]. 

Multiplicative versions of first Zagreb index of a connected graph  was defined by Eliasi et. al.  in [22] as;  

=∗ ( ) = [deg( ) + deg( )].∈ ( )∗
 

For detailed discussions of the multiplicative version of Zagreb indices, we refer the interested reader to [23] and 

the references cited therein. 

 In the following section, we will give basic definitions of ev-degree and ve-degree concepts, ve-degree and ev-

degree Zagreb indices and as well as the basic mathematical properties of these novel topological indices. And 

also we give the definitions of ev-degree and ve-degree Narumi-Katayama indices. 

2.  ve-degree and ev-degree concepts and corresponding topological indices 

In this section we give the definitions of ev-degree and ve-degree concepts which were given by Chellali et al.  in 

[1] and the definitions and properties of ev-degree and ve-degree topological indices.  

Definition 2.1 [1] Let  be a connected graph and	 ∈ ( ) . The ve-degree of the vertex	 , ( ),	equals the 

number of different edges that incident to any vertex from the closed neighborhood of 	 . For convenience we 

prefer to show the ve-degree of the vertex	 , by  .  

Definition 2.2 [1] Let  be a connected graph and  = ∈ ( ). The ev-degree of the edge	 , ( ),	equals 

the number of vertices of the union of the closed neighborhoods of 	and	 .  For convenience we prefer to show 

the ev-degree of the edge  = , by   or  .  

Definition 2.4 [1] Let  be a connected graph and	 ∈ ( ) . The total ev-degree of the graph  is defined as;  

= ( ) = ∑ ∈ ( ) . 

And the total ve-degree of the graph  is defined as;  

= ( ) = ∑ ∈ ( ) .  

Observation 2.5 [1] For any connected graph , 

( ) = ( ).  
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Observation 2.6 [1] For any triangle free connected graph , 

= = deg( ) + deg( ).  
The following theorem states the relationship between the first Zagreb index and the total ve-degree of a connected 

graph .  

Theorem 2.7 [1] For any connected graph ,  

( ) = ( ) = ( ) − 3 ( ).  
where ( ) denotes the total number of triangles in .   

In [1], the authors suggested the idea that to carry these novel degree concepts to mathematical chemistry. One of 

the present author following this suggestion defined ev-degree and ve-degree Zagreb indices and showed that these 

novel group Zagreb and Randić indices give better correlation than well-known topological indices such as; 

Wiener, Zagreb and Randić indices to modelling some physicochemical properties of octane isomers [2]. And 

now, we give the definitions and some basic mathematical properties of ev-degree and ve-degree Zagreb indices 

which were given in [2]. 

Definition 2.8 [2] Let  be a connected graph and ∈ ( ). The ev-degree Zagreb index of the graph  is 

defined as;  

= ( ) = ∑ ∈ ( )  . 

Definition 2.9 [2] Let  be a connected graph and ∈ ( ). The first ve-degree Zagreb alpha index of the graph 

 is defined as;  

= ( ) = ∑ ∈ ( ) . 

Definition 2.10 [2] Let  be a connected graph and ∈ ( ). The first ve-degree Zagreb beta index of the graph 

 is defined as;  

= ( ) = ∑ ( + )∈ ( ) . 

Definition 2.11 [2] Let  be a connected graph and ∈ ( ).  The second ve-degree Zagreb index of the graph 

 is defined as;  

= ( ) = ∑ ∈ ( ) . 
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Definition 2.12 [2] Let  be a connected graph and ∈ ( ).  The  ve-degree Randić index of the graph  is 

defined as;   

( ) = ∑ (	 	) ⁄∈ ( ) . 

And now we restate the some basic properties of ev-degree and ve-degree Zagreb indices which were given in [2]. 

Lemma 2.13 [2]  Let T be a tree and ∈ ( ) then,  

= deg	( )∈ ( ) . 
Theorem 2.14 [2]  Let T be a tree with the vertex set  ( ) = , , … ,  then 

( ) = 2 ( ). 
Theorem 2.15 [2]  Let G be a triangle free connected graph, then; 

( ) = ( ) + 2 ( ).  
Corollary 2.16 Let T be a tree then; 

( ) = ( ) + ( ). 
And now we give the definitions of ev-degree and ve-degree Narumi-Katayama indices for a graph G.  

Definition 2.17 The -Narumi-Katayama index of a graph G is defined with the following equation 

= ( ) = ∈ ( ) . 
  If a graph has an isolated vertex, its = 0 which is the minimal value of  . We take the graphs 

without isolated vertices in the following results which will be introduced in the section four. 

Definition 2.18 The -Narumi-Katayama index of a graph G is defined with the following equation 

= ( ) = ∈ ( ) . 
In the next section we investigate the predicting power of these novel topological indices and after that we 

investigate some mathematical properties of these novel indices. 

 

3 New tools for QSPR researches: the ev-Narumi-Katayama index and the ve- Narumi-Katayama index 
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In this section we compare the Narumi-Katayama index and its corresponding versions of the ev-Narumi-

Katayama and ve- Narumi-Katayama indices with each other by using strong correlation coefficients acquired 

from the chemical graphs of octane isomers. We get the experimental results at the www.moleculardescriptors.eu 

(see Table 1). The following physicochemical features have been modeled: 

• Entropy, 

• Acentric factor (AcenFac), 

• Enthalpy of vaporization (HVAP), 

• Standard enthalpy of vaporization (DHVAP). 

We select those physicochemical properties of octane isomers for which give reasonably good correlations, i.e. the 

absolute value of correlation coefficients are larger than 0.8959 (see Table 2). Also we find the Narumi-Katayama 

index of octane isomers values at the www.moleculardescriptors.eu (see Table 3).  We also calculate and show the 

ev-Narumi-Katayama and the ve- Narumi-Katayama indices of octane isomers values in Table 3.   

Table 1. Some physicochemical properties of octane isomers 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Topological indices of octane isomers 

Molecule Entropy AcenFac HVAP DHVAP 
n-octane 111.70 0.39790 73.19 9.915 
2-methyl-heptane 109.80 0.37792 70.30 9.484 
3-methyl-heptane 111.30 0.37100 71.30 9.521 
4-methyl-heptane 109.30 0.37150 70.91 9.483 
3-ethyl-hexane 109.40 0.36247 71.70 9.476 
2,2-dimethyl-hexane 103.40 0.33943 67.70 8.915 
2,3-dimethyl-hexane 108.00 0.34825 70.20 9.272 
2,4-dimethyl-hexane 107.00 0.34422 68.50 9.029 
2,5-dimethyl-hexane 105.70 0.35683 68.60 9.051 
3,3-dimethyl-hexane 104.70 0.32260 68.50 8.973 
3,4-dimethyl-hexane 106.60 0.34035 70.20 9.316 
2-methyl-3-ethyl-pentane 106.10 0.33243 69.70 9.209 
3-methyl-3-ethyl-pentane 101.50 0.30690 69.30 9.081 
2,2,3-trimethyl-pentane 101.30 0.30082 67.30 8.826 
2,2,4-trimethyl-pentane 104.10 0.30537 64.87 8.402 
2,3,3-trimethyl-pentane 102.10 0.29318 68.10 8.897 
2,3,4-trimethyl-pentane 102.40 0.31742 68.37 9.014 
2,2,3,3-tetramethylbutane 93.06 0.25529 66.20 8.410 
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Table 3. The correlation coefficients between new and old topological indices and some physicochemical 

properties of octane isomers  

 

 

 

 

Table 4. The squares of correlation coefficients between topological indices and some physicochemical 

properties of octane isomers 

 

 

 

 

Note that the all values in Table 2 are given by using natural logarithm. It can be seen from the Table 2 that the 

most convenient indices which are modelling the Entropy, Enthalpy of vaporization (HVAP), Standard enthalpy 

Molecule Nar evNar veNar 

n-octane 4.159 9.129 9.129 
2-methyl-heptane 3.871 9.640 9.757 
3-methyl-heptane 3.871 9.575 9.575 
4-methyl-heptane 3.871 9.575 9.510 
3-ethyl-hexane 3.871 9.510 9.352 
2,2-dimethyl-hexane 3.466 10.491 10.738 
2,3-dimethyl-hexane 3.584 10.045 10.098 
2,4-dimethyl-hexane 3.584 10.085 10.163 
2,5-dimethyl-hexane 3.584 10.150 10.386 
3,3-dimethyl-hexane 3.466 10.386 10.450 
3,4-dimethyl-hexane 3.584 9.980 9.940 
2-methyl-3-ethyl-pentane 3.584 9.980 9.911 
3-methyl-3-ethyl-pentane 3.466 10.281 10.240 
2,2,3-trimethyl-pentane 3.178 10.869 11.075 
2,2,4-trimethyl-pentane 3.178 11.002 11.298 
2,3,3-trimethyl-pentane 3.178 10.828 11.010 
2,3,4-trimethyl-pentane 3.296 10.515 10.658 
2,2,3,3-tetramethylbutane 2.773 11.736 12.210 

Index Entropy AcenFac HVAP DHVAP 

Nar 0.9398 0.9700 0.8959 0.9410 

ve-Nar -0.9192 -0.9092 -0.9236 -0.9490 

ev-Nar -0.9369 -0.9486 -0.9202 -0.9568 

Index Entropy AcenFac HVAP DHVAP 

Nar 0.8832 0.9409 0.8026 0.8854 

ve-Nar 0.8449 0.8266 0.8530 0.9006 

ev-Nar 0.8778 0.8998 0.8468 0.9154 
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of vaporization (DHVAP) and Acentric factor (AcenFac) are Narumi-Katayama  index (S) for entropy and Acentric 

Factor, ve-Narumi-Katayama index for the Enthalpy of vaporization (HVAP) and  ev-Narumi-Katayama index for 

the  Standard enthalpy of vaporization (DHVAP), respectively. But notice that the Narumi-Katayama index show 

the positive strong correlation and the ve-Narumi-Katayama  and the ev-Narumi-Katayama indices show the 

negative strong correlation. Because of this fact we can compare these graph invariants with each other by using 

the squares of correlation coefficients for ensure the compliance between the positive and negative correlation 

coefficients (see Table 4).  

 The cross-correlation matrix of the indices are given in Table 5.  

 Table 5. The cross-correlation matrix of the topological indices 

 

 

 

 

It can be shown from the Table 5 that the absolute 

value of the minimum correlation efficient 

among the indices is 0.9715 which is indicate strong correlation among all these indices. From the above 

arguments, we can say that the ve-Narumi-Katayama index and ev-Narumi-Katayama index are possible tools for 

QSPR researches. 

4. Main results 

In this section, we firstly give some basic mathematical properties of ve-degree,  ev-Narumi-Katayama  and ve-

Narumi-Katayama indices. And secondly we investigate certain mathematical properties of ev-degree and ve-

degree Zagreb indices. 

Lemma 4.1. Let G be a connected graph then; 

= =∈ ( ) 3 ( )∈ ( )  

where ,  , ( ) denote the number of triangles in G containing the vertex v, the number of triangles in G 

containing the edge e and the total number of triangles in G, respectively. 

Proof. The second part of this equality were given in [1]. The first part comes from that since every triangle  

consists of three vertices and edges , we count every triangle exactly three times for each vertex. Since the total 

number of triangles in the graph G will not be changed, the desired result acquired easily. □ 

Index Nar ve-Nar ev-Nar

Nar 1.0000

ve-Nar -0.9901 1.0000

ev-Nar -0.9715 0.9931 1.0000
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Lemma 4.2.  Let G be a connected graph and ∈ ( ), then; = ∑ deg( ) −∈ ( ) . 

Proof. From the Definition 2.1, we know that   equals the number of different edges incident to any vertex of ( ). Therefore = ∑ deg( )∈ ( )  if 	does not lie in a triangle.  But if  belongs a triangle then the edge that 

does not incident to  of this triangle must be counted twice in the sum ∑ deg( )∈ ( ) .	 Therefore we must minus  

one  from the sum ∑ deg( )∈ ( )  for we find the exact number of different edges incident to ( ). Thus if  lies 

in more than one triangle then we must minus  from the the sum ∑ deg( )∈ ( )  for we find the exact number 

of different edges incident to ( ).  □            

Corollary 4.3.  For the n-vertex triangle free graph G the ve-degree Narumi-Katayama index ( )  is 

calculated by the next equation; ( ) = ∏ ∑ deg	( )∈ ( )∈ .  
Example 4.4. Consider the  path graph = = 1  and ( ) = 1 . For  path graph = == 2 and ( ) = 8. For 	, = = 2 and = = 3 so that  ( ) = 36. We take the   

such that ≥ 5. = = 2 and = = 3 and the -degree of the other vertices are 4. Therefore ( ) = 9. 4  .  

Example 4.5. Consider the  cycle  = = = 3  and ( ) = 27.  For ≥ 4 every cycle  4 -

regular and  ( ) = 4 .  
Example 4.6.  Consider the  star graph on  vertices. Every vertices have the same -degree such that ( − 1). This means; ( ) = ( − 1) .  
Example 4.7. Consider the  complete graph with  vertices.  is a -regular graph with the size =( − 1) 2⁄ . Therefore,  ( ) = .  
Proposition 4.8.  Let  be a graph with  vertices, then  ( ) ≤ ( ). 
Proof. Note that contribution each edge is positive. Hence, ( )  reaches its maximum value for the complete 

graphs. □ 

 

Proposition 4.9. For the  path graph with  vertices such that ≥ 4,  ( ) = ( ) = 9.4 . 
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Proof.  We have already known that  ( ) = 9. 4  from the Example 4.4. There are − 3	edges with their 

ev-degrees equal 4 and 2 edges with their ev-degrees equal 3 for the n-vertex path. Therefore the proof is 

completed. □ 

Proposition 4.10.  For the  cycle  on  vertices such that ≥ 4, ( ) = ( ) = 4 . 
Proof. From the Example 4.5 we can directly write that  ( ) = 4 . And clearly from the definition of ev-

degree, every edge of  is 4 -regular. The proof comes from this fact. □ 

Proposition 4.11.  For  the  star graph with  vertices such that   ≥ 4, ( ) = < ( ) = ( − 1) . 
Proof. We make the proof by induction on .  For			 = 4 , ( ) = 4 = 64 < ( ) = 3 = 81 

as desired. We assume that the claim is true for =  and we will show that it is true = + 1.  
For   = ,     < ( − 1)  is equivalent to, 

1 + 1− 1 < ( − 1) 
and for  = + 1,    ( + 1) < . Thus we want to show that 

1 + 1 < . 
1 + 1 < 1 + 1− 1 = 1 + 1− 1 1 + 1− 1  

< ( − 1) ( ) = . So the proof ends. □ 

Theorem 4.12.   

(a) The -vertex tree with maximal  is the  such that  ( ) = ( − 1) . 

(b) The -vertex unicyclic graph with the maximal 	  is the  +  (depicted in Fig.1) such that ( + ) = ( − 1) . 

(c) The -vertex bicyclic graph with the maximal 	   is  (depicted in Fig.1) such that ( ) =( + 1) 	( − 1) . 
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Figure 1. The graphs  +  and . 

 

Theorem 4.13.  

(a) The -vertex tree with minimal  is the   ( ≥ 4) such that ( ) = 9.4 . 

(b) The -vertex unicyclic graph with the minimal	  is the   (depicted in Fig. 2) such that  ( ) = 2.3. 5 . 4 . 
(c) The -vertex bicyclic graph with the minimal	  is the   (depicted in Fig. 2) such that  ( ) = 5 . 4 . 

               

Figure 2. Graphs which are used for Theorem 2. 

Theorem 4. 14. 

(a) The -vertex tree with second maximal   is the  (depicted in Fig. 3)  such that ( ) = 2( − 1) ( − 2) . 
(b) The -vertex unicyclic graph  with  second maximal	  is the   + +  (depicted in Fig.4)  such that ( + + ) = 4. . ( − 2) . 
(c) The -vertex bicyclic graph with second maximal	  is  (depicted in Fig. 3 ) such that  ( ) = 5. ( + 1) ( − 2) . 
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Figure 3. The graph  and . 
 

 

 

 

Figure 4. The graph + + . 
Theorem 4.15. 

(a) The -vertex tree with second minimal   is the  graph (depicted in Fig. 5)  such that ( ) = 2 . 3 . 5 . 4 . 
(b) The -vertex unicyclic graph with second minimal	  is the    graph (depicted in Fig. 6)  such that ( ) = 2. 3 . 5 . 4  

(c) The -vertex bicyclic graph with second minimal	  is the  graph (depicted in Fig.7 ) such that  ( ) = 3. 5 . 4  

 

 

 

Fig 5. The graph . 
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Fig 6. The graph . 

 

 

 

Fig 7. The graph . 

Corollary 4.16. For any triangle-free graph G,  ( ) = ∏ ( )∗ . 

Proof. The proof directly comes from the Observation 2.6, the Definition 2.18 and the definition of multiplicative 

version of the first Zagreb index. □ 

And now we give some mathematical properties of  ev-degree and ve-degree Zagreb indices in terms of the 

forgotten topological index and the total number of the triangles n(G) of a connected graph G. Before giving 

propositions, we give following terminologies which be used  

Theorem 4.17.  Let G be a connected graph then; 

( ) = ( ) + 2 ( ) − 2 (deg( ) + deg( ))∈ ( ) + ∈ ( ) . 
Proof. We know that = deg( ) + deg( ) −  and = ( ) = ∑ ∈ ( ) . Therefore; 

= ( ) = ∈ ( ) = (deg( ) + deg( ) − )  

= ∑ (deg( ) + deg( )) − 2∑ (deg( ) + deg( ))∈ ( )∈ ( ) +∑ ( )  

= (deg( ) + deg( ) ) + 2 deg( ) deg	( )∈ ( )∈ ( )− 2 (deg( ) + deg( )) +∈ ( ) ( ) 	
= ( ) + 2 ( ) − 2∑ (deg( ) + deg( ))∈ ( ) + ∑ ∈ ( ) . □ 
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Theorem 4.18. Let G be a connected graph then; ( ) = 2 ( ) − 6 ( ) ( ) denotes the total number of triangles in G. 

Proof.  From the definition of the first ve-degree Zagreb beta index and Lemma 4.2 we get that; 

( ) = ( + )∈ ( ) = [( deg( ) − ) + ( deg( ) − )]∈ ( )∈ ( )∈ ( )  

= ( deg( ) + deg( )) − ( + )∈ ( )∈ ( )∈ ( )∈ ( )  

= 2 ( ) − 6 ( ). □ 

Theorem 4.19.  Let G be a connected graph then; 

( ) = ( ) − 2 ( deg	( ) ) + ∈ ( )∈ ( )∈ ( )  

 the number of triangles in G containing the vertex v.  

Proof. From the definition of the first ve-degree Zagreb alpha index and Lemma 4.2 we get that; 

( ) = =∈ ( ) ( (deg( ) − )∈ ( )∈ ( )  

= [( deg	( ))∈ ( ) − 2∈ ( ) deg( ) + ]∈ ( )  

= ( deg	( ))∈ ( ) ) − 2 ( deg	( ) ) + ∈ ( )∈ ( )∈ ( )∈ ( )  

= deg	( ) −∈ ( ) 2 ( deg	( ) ) + ∈ ( )∈ ( )∈ ( )  

= ( ) − 2∑ (∑ deg	( ) ) + ∑ ∈ ( )∈ ( )∈ ( ) . □ 

It is very surprisingly to see that for any triangle free graph the forgotten topological index and the first ve-degree 

Zagreb alpha index equal each other. The following corollary states this fact. 

Corollary 4.20.  Let G be a triangle-free connected graph then; ( ) = ( ). 
5.Conclusion 

In this study we defined ev-degree and ve-degree Narumi-Katayama indices and showed that these novel degree 

based topological indices can be used possible tools for QSPR researches. Also we investigated some basic 

mathematical properties of ev-degree and ve-degree Narumi-Katayama and Zagreb indices. It can be interesting to 
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compute the exact value of ev-degree and ve-degree topological indices for some graph operations. It can also be 

interesting to investigate the ev-degree and ve-degree concepts for the other topological indices for further studies. 
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