| Residues in most favoured regions [A,B,L]
Residues in additional allowed regions [a,b,l,p]
Residues in generously allowed regions [~a,~b,~l,~p]
Residues in disallowed regions | 199
80
16
8 | 65.7%
26.4%
5.3%
2.6% | |---|----------------------|--------------------------------| | Number of non-glycine and non-proline residues Number of end-residues (excl. Gly and Pro) | 303 | 100.0% | | Number of glycine residues (shown as triangles)
Number of proline residues | 15
25 | | | Total number of residues | 345 | | ## Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good quality model would be expected to have over 90% in the most favoured regions. | Residues in most favoured regions [A,B,L]
Residues in additional allowed regions [a,b,l,p]
Residues in generously allowed regions [~a,~b,~l,~p]
Residues in disallowed regions | 235
55
3
1 | 79.9%
18.7%
1.0%
0.3% | |---|---------------------|--------------------------------| | Number of non-glycine and non-proline residues | 294 | 100.0% | | Number of end-residues (excl. Gly and Pro) | 2 | | | Number of glycine residues (shown as triangles)
Number of proline residues | 24
23 | | | Total number of residues | 343 | | ## Based on an analysis of 118 structures of resolution of at least 2.0 Angstroms and R-factor no greater than 20%, a good quality model would be expected to have over 90% in the most favoured regions.