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Abstract: For decades, compounds present in foods and beverages have been implicated in the 
etiology of human cancers. The International Agency for Research on Cancer (IARC) continues to 
classify such agents regarding their potential carcinogenicity in humans based on new evidence 
from animal and human studies. Furfuryl alcohol and β-myrcene belong to these potential human 
carcinogens due to be evaluated. The major source of furfuryl alcohol in foods is thermal processing 
and ageing of alcoholic beverages while β-myrcene occurs naturally as a constituent of essential oils 
of plants such as hops, lemongrass and derived products. This study aimed to summarize the 
occurrence of furfuryl alcohol and β-myrcene in foods and beverages using data from own nuclear 
magnetic resonance (NMR) analysis and literature review. The highest content of furfuryl alcohol 
was found in coffee beans (>100 mg/kg) and in some fish products (about 10 mg/kg) while among 
beverages, wines contained between 1–10 mg/L with 8 mg/L in pineapple juice. The content of β-
myrcene was highest in hops. In conclusion, the data about the occurrence of the two agents is 
currently judged as insufficient for exposure and risk assessment. The results of this study point out 
the food and beverage groups that may be considered for future monitoring of furfuryl alcohol and 
β-myrcene. 
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1. Introduction 

The production and processing of foods and beverages may invariably lead to significant 
changes in the chemical composition of the products. The Maillard reaction, which yields furanic 
compounds such as furfural and 5-hydroxymethylfurfural (HMF) and furfuryl alcohol, among other 
products, is common during processes that involve heating or roasting [1–5]. Furfuryl alcohol is a 
food contaminant, which occurs in significant amounts in thermally processed foods such as coffee, 
fruit juices, baked foods and in wood-aged alcoholic beverages such as wines, brandies, and whiskies 
as a result of enzymatic or chemical reduction of furfural [6–8] and in butter, as well as in butterscotch 
when used as a flavoring agent [9]. Furfuryl alcohol may also be formed via the degradation of quinic 
acid or 1,2-enediols during heating of foods such as coffee beans [5]. In acidic conditions, furfuryl 
alcohol polymerizes to form aliphatic polymers that give a brown colouration to foods [5].  

Myrcene is a terpenoid compound that exists in two forms, β and α with the former occurring 
naturally in essential oils of plants such as hops, bay, lemongrass [10,11], orange juice [12] and is 
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permitted for use as a flavoring additive of food both by the US Food and Drug Administration (FDA) 
since 1965 and by the European Council since 1974. β-Myrcene is also an ingredient in the preparation 
of olefinic scents such as menthol, and the alcohols linalool, nerol and geraniol [13] found in 
household items.  

Analysis of furfuryl alcohol can be done by either gas and liquid chromatography with UV, 
biosensor or fluorescence detection [5,6,14–17], while β-myrcene is typically determined using gas 
chromatography with mass spectrometry or flame ionization detection [18–21]. 

Apart from occupational exposure, diet remains the greatest source of human exposure to 
furfuryl alcohol and β-myrcene. However unlike the furanic compounds, furan, 5-
hydroxymethylfurfural (HMF) and furfural and other food and beverage constituents such as 
ethanol, ethyl carbamate or polycyclic aromatic hydrocarbons for which extensive occurrence data is 
available [22–26], there is a paucity of information on human dietary exposure to furfuryl alcohol and 
β-myrcene. The two agents are due for assessment as to their carcinogenicity by the International 
Agency for Research in Cancer (IARC) working group in their meeting to be held in June 2017. This 
study aims to provide an overview of the occurrence of furfuryl alcohol and β-myrcene in foods and 
beverages. 

2. Materials and Methods  

Occurrence data on furfuryl alcohol and β-myrcene were obtained by a computer-assisted 
literature search in the following databases: PubMed, Toxnet and ChemIDplus (U.S. National Library 
of Medicine, Bethesda, MD), Web of Science (Thomson Scientific, Philadelphia, PA), and 
IPCS/INCHEM (International Programme on Chemical Safety/Chemical Safety Information from 
Intergovernmental Organizations, WHO, Geneva, Switzerland). Efforts were made to include all 
available studies; this was accomplished by a hand search of the reference lists of all articles for any 
relevant studies not included in the databases. The references, including abstracts, were imported 
into Mendeley (Mendeley Inc., NY, USA) and the relevant articles were manually identified and 
obtained in full text. No unpublished study was identified.  

Additional data on the occurrence of furfuryl alcohol was also obtained from in-house analysis 
of 30 coffee (roasted coffee as beans, powder or pods), 15 bread, 20 wine and 50 alcoholic spirit 
samples (whiskey, brandy, and rum) submitted to our laboratory in the context of official control 
using nuclear magnetic resonance spectroscopy (NMR) [27]. For this, spectra previously acquired for 
other purposes were re-quantified for furfuryl alcohol. The coffee samples were analyzed according 
to Monakhova et al. [28]. Quantification was conducted using the integral of the CH group at C5 
resonance of furfuryl alcohol (δ 7.47–7.35 ppm) in relation to the internal standard 1,2,4,5-tetrachloro-
3-nitrobenzene (δ 7.75–7.72 ppm). Quantification was conducted using TopSpin 3.2 (Bruker BioSpin 
GmbH, Rheinstetten, Germany) and Mestrenova V. 11.0.2  (Mestrelab Research, Santiago de 
Compostela, Spain) [29]. For evaluation of spirits, the NMR method of Monakhova et al. [27] was 
applied. The NMR methods achieved a limit of detection (LOD) of 3.2 mg/L and limit of 
quantification (LOQ) of 8.6 mg/L. The results of NMR must be interpreted as semi-quantitative 
because only one single unoverlapped signal of furfuryl alcohol was available for quantification. The 
statistical parameters of mean, median, and percentiles (90th, 95th, 97.5th and 99th) were used to 
describe the occurrence data.  

3. Results 
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This study summarizes the occurrence of furfuryl alcohol and β-myrcene in various foods and 
beverages. Limited studies on β-myrcene (7) were observed compared to 20 studies for furfuryl 
alcohol. Meta-analysis was not possible due to the sparsity of studies for each type of food and 
beverage. The occurrence of furfuryl alcohol was recorded in a wide range of foods and beverages 
that have been subjected to thermal processing. The studies are summarized in Table 1; we also 
include the new results from our analysis on furfuryl alcohol in 30 coffee, 15 bread, 20 wine and 50 
aged alcoholic spirit samples. From these, only coffee samples were positive (average furfuryl alcohol 
content of 251), while all other samples were below the detection limit of the method. A typical 
spectrum of a coffee sample is shown in Figure 1. 

Out of the 7 studies on β-myrcene, 4 were in hops and related products while two were in beer 
and the final reference reported about general use levels in various foods/beverages. Chewing gum, 
gelatin, beer and hops were suggested as products with high concentration of β-myrcene. The studies 
are summarized in Table 2. 

4. Discussion 

Occurrence of furfuryl alcohol 
The concentration of furfuryl alcohol was highest in coffee (beans 564 mg/kg and 267 mg/kg in 

instant coffee powder). Our new data on coffee with an average of 251 mg/kg and a maximum of 408 
mg/kg corresponds well to the previous data. The occurrence of furfuryl alcohol in coffee is 
attributable to the roasting process [5]. This observation parallels the high content of furan found in 
coffee compared to other foods [24]. Other thermally processed foods such as bread (187 mg/kg), 
baked goods (110 mg/kg), ice cream/ices (88 mg/kg) and fried fish (about 10 mg/kg) were also found 
to contain detectable amounts of furfuryl alcohol. Among beverages, higher concentrations of 
furfuryl alcohol arising from aging in oak barrels [30] were found in spirits (10 mg/L) than in wine 
(1.5–3.4 mg/L). However, the content was lower than compared to bread, baked goods, fish and 
coffee. Relatively lower concentrations (less than 1 mg/kg) were observed in palm sugar, chips, 
popcorns, sweet potatoes and vinegar. The variation in the concentration of furfuryl alcohol in the 
foods/beverages may be related to the type of raw materials and processing conditions used. The 
high amounts reported in coffee are comparable with the air levels found in occupational 
environments where up to 500 mg/kg furfuryl alcohol have been detected [31]. The Joint FAO/WHO 
Expert Committee on Food Additives (JECFA) set a group acceptable daily intake (ADI) of 0–0.5 
mg/kg body weight for furfuryl alcohol and suggested the compound as being of no safety concern 
at current levels of intake when used as a flavoring agent [32]. Despite the concentrations reported 
here being low for a majority of individual foods and beverages, a cumulative amount of furfuryl 
alcohol may be ingested from consuming a combination of different foods and beverages. According 
to the National Toxicology Program (NTP) report [33], exposure of male mice of 32 ppm (equivalent 
to 60 mg/kg bw/day [31]) of furfuryl alcohol was found to induce tumors of renal tubules. The 
postulated mechanism of carcinogenicity of furfuryl alcohol is through activation by 
sulfotransferases resulting in the formation of a 2-methylfuranyl-DNA adduct [31,34]. According to 
estimation from the typical intake levels of the food items listed in table 1, concentrations of 
toxicological concern are probably not reached. However, food legislation demands to reduce food 
contaminants as low as reasonably achievable (ALARA principle). More data are clearly necessary to 
provide exposure estimations and risk assessment for this compound. 
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Occurrence of β-myrcene 
A majority of the studies on β-myrcene are qualitative and the few quantitative data was 

focusing on hops and beers despite the fact of the widespread occurrence of myrcene in many plants 
that are used in foods and beverages. Hop oil and chewing gum were found to contain the highest 
content of β-myrcene compared to other products. The low concentration of β-myrcene in beers is 
plausible since there is a very variable extraction of β-myrcene from hops to beer postulated to be in 
the range of 0.5-5.6% from cones and 8.4-25.8% from pellets [35] and hops contain other volatile 
components such linanool, humulene and α-terpineol in higher proportions than β-myrcene. 
Additionally, β-myrcene may be destroyed during the heating processes and thus a low level is 
expected in the final beer. The NTP report links β-myrcene with neoplasms of the kidney in male rats 
and liver cancer in male mice [36]. The daily per capita intake (eaters only) for β-myrcene was 
estimated as being 164 µg corresponding to 3 µg/kg bw [37].  

5. Conclusions  

Besides diet, humans may be exposed to furfuryl alcohol and β-myrcene from other sources such 
as occupation. Consistent with the relatively high amounts of furfuryl alcohol (above 10 mg/kg) 
observed in coffee, baked goods, bread, fish and some spirit drinks, monitoring these items for 
furfuryl alcohol is advisable for comprehensive estimation of exposures and the risk of these foods 
while more studies on the occurrence of β-myrcene in foods and beverages in general are required 
for meaningful risk assessment.  
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 Table 1. Furfuryl alcohol content in various foods and beverages 1 

Category/  
Reference 

N 
Furfuryl alcohol concentration 

Unitsa 
Mean Median P90 P95 P97.5 P99 Maximum 

Roasted coffee/This study 30 251 243 342 392 402 406 408 mg/kg 
Bread/This study 15 <LODb       mg/kg 
Wine/This study 20 <LODb       mg/L 

Spirits/This study 50 <LODb - - - - - - mg/L 
Wine [30] 6 1.51 0.89 1.57 1.60 1.62 1.63 1.64 mg/L 

Vinegar [38]c 27 0.35 0.28 0.58 0.59 0.59 0.59 0.59 mg/L 
Vinegar [39]c 9 0.34 0.28 0.58 0.59 0.59 0.59 0.59 mg/L 

Wine [7] 8 3.4 2.9 7.3 8.5 9.0 9.4 9.6 mg/L 
Baked goods[9] d - 110 - - - - - - ppm 

Spirits [9] d - 10 - - - - - - ppm 
Candy [9] d - 59 - - - - - - ppm 

Ice cream/ ices [9] d - 88 - - - - - - ppm 
Beverages [9] d - 19 - - - - - - ppm 

Coffee [40] 7 49 49 64 67 68 69 70 mg/kg 
Fried fish [16] 1 10.5       mg/kg 

Breaded fish products [17] 4 10.3 8.8 16 18 18 19 19 mg/kg 
Sweet potatoes [4] 1 0.014  - - - - - - mg/kg 
Instant coffee [41] 1 267 - - - - - - mg/kg 
Roasted coffee [41] 1 564 - - - - - - mg/kg 

Rice cakes [42] 2 2, 2.3 - - - - - 2.3 mg/kg 
Bread [43] 1 187 - - - - - - mg/kg 
Honey [14] 1 1.6 - - - - - - mg/kg 

Popcorns [15] 6 0.064 0.067 0.081 0.081 0.082 0.082 0.082 mg/kg 
Toasted almonds [44] 3 6.4 6.0 8.3 8.6 8.7 8.8 8.9 mg/kg 

Non-fat dried milk [45] 1 15 - - - - -- - mg/kg 
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Corn tortilla chips [46] 1 0.54 - - - - --  mg/kg 
Cocoa powder [47] 1 0.02 - - - - - - mg/kg 

Palm sugar [48] 1 0.14, 0.52 - - - - - - mg/kg 
Pineapple juice [41] 1 8.3 - - - - - - mg/L 

a The ambiguous unit ppm was interpreted as mg/L for liquids/beverages and as mg/kg for solid foods. 2 

b All spirits samples evaluated (whiskey, rum, brandy) were below the limit of detection (3.2 mg/L). 3 

c Studies from the same group with probably overlapping data. 4 

d Number of samples not provided. The data are suggested as being “usual concentrations” found in these food/beverage types.5 
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Table 2. β-Myrcene content in various matrices 6 

Matrix/ 
Reference 

N 
Concentration 

Unitsa 
Mean Median P90 P95 P97.5 P99 Maximum 

Hops [49]  12 5489 4804 8580 9450 9972 10285 10494 mg/kg 

Hops oil [18] 4 479 424 776 852 890 912 927 mg/L 

Hops [50] 8 15 14 28 29 29 29 29 µg/L 

Hops [51] 12 1082 705 2369 2795 3043 3191 3290 mg/kg 

Pilsner beer [52] 2 46, 79 - - - - - 79 µg/L 

Beer [53] 2 0.5, 0.6 - - - - - 0.6 µg/L 

Alcoholic beverages* [54] b - 1.1 - - - - - - mg/L 

Baked goods [54] b - 10 - - - - - - mg/kg 

Chewing gum [54] b - 116 - - - - - - mg/kg 

Condiment [54] b - 5 - - - - - - mg/kg 

Frozen dairy  [54] b - 12 - - - - - - mg/kg 

Gelatin, pudding [54] b  - 20 - - - - - - mg/kg 

Meat products  [54] b - 5 - - - - - - mg/kg 

Non-alcoholic beverages [54] b - 8 - - - - - - mg/L 

Soft candy  [54] b - 6 - - - - - - mg/kg 

a The ambiguous unit ppm was interpreted as mg/L for liquids/beverages and as mg/kg for solid food. 7 
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b Number of samples not provided. The data are suggested as being “usual concentrations” found in these food/beverage types.8 

 9 
Figure 1: NMR spectra of an authentic coffee sample (blue line) containing 408 mg/kg of furfuryl alcohol compared to the reference standard (red 10 

line) 11 
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