APPENDIX B

Table A1: Review of selected articles

	Title, Reference; Type	Focus/Objectives	Underlying	Main Findings	Other Findings	Insights and Comments
	of Study		Technology			
1.	Disease Diagnosis	Creation of expert system	MATLAB production	System leverages on 3	System is designed	System is expert-dependent,
	System (Biswas &	(ES) for medical diagnosis	rules; MS	modules and able to	for use by experts.	unable to function
	Bairagi, 2011);	based on prototyping of	Excel and Visual Basic	proceed from general	Diagnosis made by	independently. A <i>physician-</i>
	Conceptual	patient cases. Literature		examination and	system is evaluated	machine-patient system is
		and human experts served		previous consultations	by a human expert	created
		as knowledge basis		(connection with	to identify errors	
				available database) to		
				generate future diagnosis		
2.	Rule Based Expert	Rule based ES for medical	Java Expert System	System is able to make	Knowledge base	User must have basic computer
	System for Diagnosis	diagnosis; employs	Shell (JESS) and RETE	accurate diagnosis. It is a	development	literacy as well as training on
	of Neuromuscular	pattern matching for	pattern-matching	machine-patient system	employed experts;	how to use the system. System
	Disorders (Borgohain	knowledge-base search	algorithm; diagnostic	that employs a GUI that	user is restricted to	can be deployed on selected
	& Sanyal, 2012);	for useful information on	process implements	uses textual input/output	fixed answer	platforms.
	Empirical	likely diagnosis based on	decision tree	procedure	options (yes/no)	
		user-supplied information				
3.	Symptom-Diagnosis-	Design and evaluation of a	Chat bot interface was	Framework deployed on	Procedure is in line	Further studies to address
	Care: A Framework for	symptom-diagnosis-care	created with jQuery,	mobile phone. Follows	with script theory	possibility of links to patients'
	a Collaborative	framework for training	Bootstrap, and HTML,	the yes/no question and	as employed by	medical history and (possibly
	Medical Chat Bot (M	medical chat bots using	flow chart with	answer procedure to	medical experts in	wearable) devices that can
	Fischer, 2016);	information from the	interact.js; system	arrive at diagnosis. A	diagnosis. Design	create seamless access to other
	Empirical	"American Medical	server written in	machine-patient system	constrains user to	information required in the
4.	From Books to Bots:	Association Family	Node.JS with a	is created. System	pre-defined	diagnostic process (e.g. patient
	Using Medical	Medical Guide" book	Postgres database	employs a GUI on which	responses; limited	vitals)
	Literature to Create a			the user can click or type;	error but also	
	Chat Bot (Michael			uses crowd workers	limited application	
	Fischer & Lam, 2016);			rather than experts for		
	Empirical			system training		

5.	Rule-Based ES for the	Proposes rule- and case-	-	Designed as a patient	Common ailments	Access to medical databases for
	Diagnosis of Memory	based reasoning for the		support system in the	are addressed.	system training, patient privacy,
	Loss (Holel & Gulhane,	design of expert system		absence of professional	Implementation	data security & confidentiality
	2014); review	for medical diagnosis		medical service or as first	and evaluation of	are noted for future studies
				aid procedure	proposal reported	
				_	elsewhere	
6.	Knowledge discovery	Design, development and	3-tier workflow pattern	Emulates differential	Evaluation of	System is able to serve as a
	in medical systems	evaluation of a diagnosis	including symptom	diagnosis (DD) process;	system shows high	complement rather than a
	using differential	system employing an	matching, mining of	singularizes underlying	degree of accuracy.	substitute for the doctor. It is a
	diagnosis, LAMSTAR	algorithm based on the	medical records &	variables through smart	Outputs are	physician-system-patient
	& k-NN (Isola et al.,	integration of factors from	differential diagnosis	pattern matching with k-	presented as tables	design that is meant to support
	2012);	neural networks,	followed by weighting	NN classification	ad graphs that	the doctor and reduce the risk of
		LAMSTAR, k-NN and	using LAMSTAR.	technique and the next	depicts the	misdiagnosis, system still
		DD. System is built on the	Prototype developed	probable diseases by	probability of the	requires intensive learning to be
		store of available medical	with PHP, MySQL and	performing DD using	different diagnostic	useful. The challenge of the
		record to support history-	AJAX. System employs	Hopfield neural networks	possibilities.	human doctor as the know-all in
		based diagnosis by	SOA	and LAMSTAR. When	However, pilot	medical practice in spite of
		computing the probability		linked with medical	study employed	his/her dangerous limitations
		of occurrence of an		history, the probability of	manual data entry	remains strong.
		ailment using data		occurrence of a disease		
		mining.		can be calculated.		
7.	Rule Based Expert	Design, implementation	ES deployed on dual	System performance was	User must possess	
	System for Viral	and evaluation of a rule	web server with a	90% as effective as human	domain knowledge;	
	Infection Diagnosis	based ES application for	Tomcat container for	doctor evaluation. Room	data input is	Data security, privacy,
	(Patel et al., 2013)	viral infection diagnosis.	request-response cycle	for improvement is	complex, requiring	confidentiality and ambiguity
		Testing phase system	processing and MySQL	indicated as codes are yet	advanced search	are subjects for further research.
		diagnostic performance	database as knowledge	to be optimized	techniques	
		against human doctor	base			
		diagnosis				

8.	Designing Useful Virtual Standardized Patient Encounters (Talbot et al., 2012)	Discuss approaches to creation of dialogue-based conversational agents as virtual standardized patients (VSP); propose a theoretical model based on synthesis of educational approaches; recommend strategy for acceptable VSP experience	Artificially intelligent statistical matching dialogue system with multiple choice state machine-based subconversations	Virtual human natural language dialogue AI, VSP authoring and robust assessment are crucial in building VSP for medical practice	A simple Educator- friendly case editor is an important concept required to make a VSP acceptable tool for medical education	While the cost implication of learning in medical practice will reduce significantly, the quality will improve with the use of virtual standardized patients.
9.	MediAssistEdge – Simplifying diagnosis procedure & Improving patient- doctor connectivity (Tripathy & Carvalho, 2015)	Design, development, and evaluation of a dual-part remote diagnosis system to address access to healthcare in underserved populations; system focus is to provide second opinion to experts during diagnosis or provide basic diagnosis of diseases at first aid level (requiring no prescriptions).	2-part system: MediConnect provides remote diagnosis using videoconferencing with extended capability through electronic stethoscope (Stetho) and diagnosis camera (DiagnoCam). DocBot was built with PHP, MySQL and AIML.	The system can facilitate patient to doctor interaction; MediConnect for real doctor-to-patient interaction and DocBot to diagnose patients using an AI engine	The MediConnect subsystem has a video conferencing module to help the doctor to examine the patients with higher efficiency	For a service to be deployed in a developing nation, concerns for internet access and quality (for videoconferencing) are key concerns. Adding other basic equipment (thermometer, sphygmomamometer, etc.) can improve service tremendously
10.	Health Care in the Year 2050 (Wowk, 2013)	Discusses possibilities in healthcare by 2050.	-	Advances in AI, big data, microelectronics, chatbot technology, etc. will multiply possibilities. System miniaturization will increase parallel processing capacities. With AI, future possibilities are almost incomprehensible.	To position medicine into the realm of what is possible by 2050, it is helpful to view health care in three parts: Information, intelligence, and intervention.	Wearable medical devices and mobile data on health status; doctor bots operating across great digital divides, performing the most accurate diagnosis/care, interacting in natural language, processing tonnes of information in moments and rendering humans truly irrelevant

11.	Artificial	Discusses artificial	N/A	Human-level AI may be	AI-Completeness	The concept of robot rights,
	Superintelligence: A	superintelligence, and AI		achieved in the future,	theory can be used	implying the personhood of
	Futuristic Approach	safety engineering as way		this pose potential	to checkmate the	intelligent machines holding
	(Yampolskiy, 2015)	to prepare for the potential		dangers; from economic	closeness of	equal rights and privileges with
		dangers to humanity in		hardship to the complete	artificial intelligent	humans is a scary notion that
		the future. Robot rights		extinction of humankind,	agent to human	may be the beginning of the end
				though the benefits are	level intelligence	of the human race. Caution
				enormous.		must be exercised in whatever is
						done as progress is made in AI
						and super-intelligent machines
						in every field including
						healthcare.

LAMSTAR: Large Memory Storage and Retrieval; k-NN: k number of nearest neighbours; SOA: Service-Oriented Architecture

© 2016 by the authors; licensee *Preprints*, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).