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Abstract: In the context of modeling and simulation of neural nets, we formulate definitions for
behavioral realization of memoryless functions. The definitions of realization are substantively
different for deterministic and stochastic systems constructed of neuron-inspired components. In
contrast to Artificial Neural Nets (ANN), and their myriad-layered deep forms, our definitions of
realization fundamentally include temporal and probabilistic characteristics of their inputs, state,
and outputs. The realizations that we construct, in particular for the XOR logic gate, provide
insight into the temporal and probabilistic characteristics that real neural systems might display.
We conclude with implications made when contrasting our time-based neural computation systems
to ANN for what real brain computations might involve.
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1. Introduction

Bridging the gap between neural circuits and overall behavior is facilitated by an intermediate
level of neural computations that occur in individual and populations of neurons [1]. The
computations performed by Artificial Neural Nets (ANN) can be viewed as a very special, but
currently popular [2], instantiation of such a concept. However, a much broader concept of
computation can be formulated with the Discrete Event Systems Specification (DEVS) and the
structure/behavior concepts of input/output dynamic systems theory [3,4]. Computing the XOR
function has received special attention as a simple example of resisting implementation by the
simplest ANNs with direct input to output mappings [5], and requiring ANNs having a hidden
mediating layer [6,7]. From a systems perspective, the XOR function and indeed all functions
computed by ANNs, are memoryless functions not requiring states for their definition [2,8,9]. As
described by Goertzel [10], and largely as used, DNNs map vectors to vectors without considering
the immediate history of recent inputs.

Although typically considered as deterministic systems, Gelenbe introduced a stochastic model
of ANN that provided a markedly different implementation [11]. With the advent of increasingly
complex simulation of brain systems [12] the time is ripe for reconsideration of the forms of behavior
displayed by neural nets. In this paper, we employ systems theory and modeling and simulation
framework [13] to provide some formal definitions of neural input/output (I/O) realizations and how
they are applied in deterministic and probabilistic systems. We formulate definitions for behavioral
realization of memoryless functions with particular reference to the XOR logic gate. The definitions
of realization are substantively different for deterministic and stochastic systems constructed of
neuron-inspired components. In contrast to ANN that can compute functions such as XOR, our
definitions of realizations fundamentally include temporal and probabilistic characteristics of their
inputs, state, and outputs. The realizations of the XOR function that we construct provide insight
into the temporal and probabilistic characteristics that real neural systems might display.
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In the following sections, we review system specifications and concepts for their input/output
behaviors that allow us to provide definitions for systems implementation of memoryless functions.
This allows us to consider the temporal characteristics of neural nets in relation to functions they
implement. In particular, we formulate a deterministic DEVS version of the neuron net model
defined by Gelenbe [11] and show how this model implements of the XOR function. In this context,
we discuss timing considerations related to arrival of pulses, coincidence of pulses, end-to-end
time of computation and time before new inputs can be submitted. We then derive a Markov
Continuous Time model [14] from the deterministic version and point out the distinct characteristics
of the probabilistic system implementation of XOR. We conclude with implications about the
characteristics of real brain computational behaviors suggested by contrasting the ANN perspective
and systems-based formulation developed here. We note that Gelenbe and colleagues have generated
a huge literature on the random neural networks extensions and applications. The focus of this paper,
as just described, is not on DEVS modeling of such networks in general. However, some aspects
related to I/O behavior will be discussed in the conclusions as potential for future research.

2. System Specification and I/O Behaviors

Inputs/outputs and their logical/temporal relationships represent the I/O behavior of a system.
A major subject of systems theory deals with a hierarchy of system specifications [13] which defines
levels at which a system may be known or specified. Among the most relevant is the Level 2
specification, i.e., the I/O Function level specification, which specifies the collection of input/output
pairs constituting the allowed behavior partitioned according to the initial state the system is in
when the input is applied. We review the concepts of input/output behavior and their relation to
the internal system specification in greater depth.

For a more in-depth consideration of input/output behavior, we start with the top of Figure 1
which illustrates an input/output (I/O) segment pair. The input segment represents messages with
content x and y arriving at times t1 and t2, respectively. Similarly, the output segment represents
messages with contents z and z′, at times t3 and t4, respectively.

Figure 1. Representing an Input/Output Pair.

To illustrate the specification of behavior at the I/O level we consider a simple system – an
adder – all it does is adding values received on its input ports and transmitting their sum as
output. However simple this basic adding operation is, there are still many possibilities to consider
to characterize its I/O behavior such as which input values, (arriving at different times) are paired
to produce an output value and the order in which the inputs must arrive to be placed in such a
pairing. Figure 2 portrays two possibilities, each described as a DEVS model at the I/O System
Level of the Specification Hierarchy. In (a) after the first inputs of contents x and y have arrived,
their values are saved and subsequent inputs refresh these saved values. The output of message
of content z is generated after the arrival of an input and its value is the sum of the saved values.
In (b), starting from the initial state, both contents of messages must arrive before an output is
generated (from their most recent values) and the system is reset to its initial state after the output
is generated. This example shows that even for a simple function, such as adding two values, there
can be considerable complexity involved in the specification of behavior when the temporal pattern
of the messages bearing such values is considered. Two implications are immediate. One is that
there may be considerable incompleteness and/or ambiguity in a semi-formal specification where
explicit temporal considerations are often not made. The second implication follows from the first:
an approach is desirable to represent the effects of timing in as unambiguous a manner as possible.
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Figure 2. Variants of Behavior and Corresponding I/O Pairs. White circles indicate states,
black circles initial states and arrows transitions.

3. Systems Implementation of a Memoryless Function.

Let f : X → Y be a memoryless function, i.e., it has no time or state dependence [13].
Still, as we have just seen, a system that implements this function may have dynamics and state
dependence. Thus the relationship between a memoryless function and a system that somehow
displays that behavior needs to be clearly defined. From the perspective of the hierarchy of systems
specifications [13] the relationship involves 1) mapping the input/output behavior of the system to
the definition of the function and 2) working at the state transition level to establish that the mapping
works right. Additional system specification levels may be brought to bear as needed. Recognizing
that the basic relationship is that of simulation between two systems [13] we will keep the discussion
quite restricted to limit the complexities.

The first thing we need to do is represent the injection of inputs to the function by events arriving
to the system. Let’s say that the order of the arguments does not count. This is the case for the XOR
function. Therefore, we will consider segments of zero, one, or two pulses as input segments and
expect segments of zero or one pulses as outputs. In other words we are using a very simple decoding
of an event segment into the number of events in its time interval. While simplistic however, this
concept still allows arbitrary event times for the arguments and therefore consideration of important
timing issues. Such issues concern spacing between arguments and time for a computation to be
completed. Figure 3 sketches this approach and corresponding deterministic system for f with two
input ports P1 and P2 receiving contents P and an output port P3 sending a content P.

Figure 3. Deterministic System Realization of Memoryless Function.
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Appendix A gives the formal structure of a DEVS basic model and Appendix B gives our
working definition of the simulation relation to be used in the sequel. Having a somewhat formal
definition of what it means for a discrete event model to display a behavior equivalent to computing
a memoryless function we turn toward discussing DEVS models that can exhibit such behaviors for
the XOR function.

4. DEVS Deterministic Representation of Gelenbe Neuron.

Figure 4.a) shows a DEVS model that captures the spirit of the Gelenbe stochastic neuron (as
shown in [11] in deterministic form. Positive pulse arrivals increment the state up to the maximum,
while negative pulses decrement the state stopping at zero. Non-zero states transition to 0 in a time
tfire, a parameter. The DEVS model is given as:

DEVS = (X, Y, S, δext, δint, λ, ta)

Where,

X = {P+, P−} is the set of negative and positive input pulses,
Y = {P} is the set of plain pulse outputs,
S = {0, 1, 2, }̇ is the set of non-negative integer states,
δext(s, e, P+) = s + 1 is the external transition increasing the state by 1 when receiving a positive

pulse,
δext(s, e, P+, P+) = s + 2 is the external transition increasing the state by 2 when receiving

simultaneously two positive pulses,
δext(s, e, P−) = f loor(s − 1, 0) is the external transition decreasing the state by 1 (except at zero)

when receiving a negative pulse,
δint(s > 0) = f loor(s− 1, 0) is the non-zero states internal, transition function decreasing the state

by one (except at zero),
λ(s > 0) = P is the non-zero states output a pulse,
λ(s) = φ is the output sending non-event for states below threshold, and
ta(0) = +∞ is the infinity time advance for zero passive state.

Figure 4.b) shows an input/state/output trajectory in which two successive positive pulses cause
successive increases in the state to 2, which transitions to 1 after tfire and outputs a pulse. Note that
the second positive pulse arrives before the elapsed time has reached tfire and increases the state.
This effectively cancels and reschedules the internal transition back to 0. Figure 4.c) shows the case
where the second pulse comes after firing has happened. Thus here we have an explicit example of
the temporal effects discussed above. Two pulses arriving close enough to each other (within tfire)
will effectively be considered as coincident. In contrast if the second pulse arrives too late (outside
the tfire window) it will not be considered as coincident but will establish its own firing window.
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Figure 4. 2-State Deterministic DEVS model of Gelenbe Neuron. The time elapsed since the
last transition is indicated as e ∈ R+,∞

0 .

To implement the two logic functions Or and And we introduce a second parameter into the
model, the threshold. Now states greater or equal to the threshold will transition to zero state in a time
tfire and output a pulse. The threshold is set to 1 for the Or, and to 2 for the And function. Thus any
pulse arriving alone is enough to output a pulse for Or, while 2 pulses must arrive to enable a pulse
for the And. However, there is an issue with the time advance needed for state 1 in the And case
(due to an arrival of a first positive pulse). If this time advance is 0 then there is no time for a second
pulse to arrive after a first. If it is infinity then the model waits forever for a second pulse to arrive.
We introduce a third parameter, tdecay to establish a finite non-zero window after receiving the first
pulse for a second one to arrive and be counted as coincident with the first. The revised DEVS model
is:

DEVS = (X, Y, S, δext, δint, λ, ta)

Where,

X = {P+, P−} is the set of negative and positive input pulses,
Y = {P} is the set of plain pulse outputs,
S = {0, 1, 2, }̇ is the set of non-negative integer states,
δext(s, e, P+) = s + 1 is the external transition increasing the state by 1 when receiving a positive

pulse,
δext(s, e, P+, P+) = s + 2 is the external transition increasing the state by 2 when receiving

simultaneously two positive pulses,
δext(s, e, P−) = f loor(s − 1, 0) is the external transition decreasing the state by 1 (except at zero)

when receiving a negative pulse,
δint(s > 0) = f loor(s− 1, 0) is the non-zero states internal, transition function decreasing the state

by one (except at zero),
λ(s ≥ Thresh) = P is the output sending a pulse for states above or equal threshold,
λ(s) = φ is the output sending non-event for states below threshold, and
ta(s ≥ Thresh) = t f ire is the time advance, t f ire, for states above or equal threshold,
ta(s < Thresh) = tdecay is the time advance, t f ire, for states below threshold.

5. DEVS Realization of the XOR Function

We can use the And and Or models as components in a coupled model as shown in Figure 5 top
to implement the XOR function. However as we see in a moment, we need the response of the And
to be slower than that of the Or to enable the correct response to a pair pulses. So we let tfireOr and
tfireAnd to be the time advances of the Or and And resp. in above threshold states. As in Figure 5
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bottom, pulses arriving at the input ports P1 and P2 are mapped in positive pulses by the external
coupling that sends them as inputs to both components. When a single pulse arrives within the
tdecay window, only the Or responds and outputs a pulse. When a pair of pulses arrive within tdecay
window, the And detects them and produces a pulse after tfireAnd. The internal coupling from And to
Or maps this pulse into a double negative pulse at the input of the Or. Meanwhile the Or is holding in
state 2 from the pair of positive pulses it has received from the input. So long as the tfireOr is smaller
than tfireAnd, the double negative pulse will arrive quickly enough to the Or model to reduce its state
to zero, thereby suppressing its response. In this way, XOR behavior is correctly realized.

Figure 5. Coupled Model for XOR Implementation.

Assertion: The coupled model of Figure 5 with tfireAnd<tfireOr<tdecay, realizes the XOR
function in the following sense:

1. When there are no input pulses, there are no output pulses
2. When a single input pulse arrives and is not followed within tfirAnd by a second pulse then an

output pulse is produced after tfireOr of the input pulse arrival time.
3. When the pair of input pulses arrive within tfireAnd of each other, then no output pulse is

produced

Thus the computation time is tfireOr since that is the longest time after arrival of the input
arguments (first pulse or second pulse in the pair of pulses case) that we have to wait to see if there is
an output pulse.

On the other hand, the time for the system to return to its initial state and we can send in new
arguments for computation may be longer than the computation time. Indeed, the Or component
returns to the zero state after outputting a pulse at tfireOr in both single and double pulse input cases.
However, in the first case the And component, having been put into a non-zero state, only relaxes
back to zero after tdecay. Since tdecay is greater than tfireOr, the initial state return time is tdecay.

6. Probabilistic System Implementation of XOR

Gelenbe’s implementation of the XOR [11] differs quite radically from the deterministic one just
given. The concept of what it means for a probabilistic system to realize a memoryless function differs
from that given above for a deterministic one.
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Figure 6. Stochastic System Realization of Memoryless Function.

As illustrated in Figure 6, each argument of the function is represented by an infinite stream of
pulses. A stream is modeled as a Poisson stochastic process with a specified rate. An argument value
of zero is represented by a null stream i.e., a rate of zero. We will set the rate equal 1 for a stream
representing an argument value of 1. The output of the function is represented similarly as a stream
of pulses with a rate representing the value. However, rather than a point, we use an interval, on the
real line to represent the output value. In the XOR, Gelenbe’s implementation uses an interval [0, α)

to represent 0 with [α, 1] representing 1.
Furthermore, the approach to distinguishing the presence of a single input stream from a pair of

such streams – the essence of the problem – is also radically different. The approach formulates the
DEVS neuron of Figure 4 as a Continuous Time Markov model (CTM) [14] shown in Figure 7, and
exploits its steady state properties in response to different levels of positive and negative input rates.
In Figure 7, the CTM on the left has input ports P+ and P− and output port P. In non-zero states it
transitions to the next lower state with rate FireRate which is set to the inverse of tfire, interpreted as
the mean time advance for such transitions in Figure 4. The Markov Matrix model [14] on the right is
obtained by replacing the P+, P− and P ports by rates, posInputRate and negInputRate, resp. Further,
the output port P is replaced by the OutpuRate which is computed as the FireRate multiplied by the
probability of firing (i.e., being in a non-zero state.)

Figure 7. Mapping DEVS Neuron CTM to Markov Matrix Model.

As in Figure 8, each input stream splits into two equal streams of positive and negative pulses
by external coupling to two components, each of which is a copy of the CTM model of Figure 7. The
difference between the components is that the first component receives only positive pulses while
the second component receives both positive and negative streams. Note that whenever two equal
streams with the same polarity converge at a component, effectively they act as a single stream of
twice the rate. However, when streams of opposite polarity converge at a component the result is a
little more complex, as we now show.
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Figure 8. Stochastic Coupled Model Implementation of XOR.

Now let’s consider the two input argument cases: Case 1: one null stream, one non-null stream
(representing arguments (0, 1) or (1, 0)); Case 2: two non-null streams (representing (1, 1)). In this set
up, the Appendix C describes how the first component saturates (fires at its maximum rate) when it
receives the stream of positive pulses at either the basic or combined intensities. Therefore it transmits
a stream of positive pulses at the same rate in both Cases 1 and 2. Now, the second component differs
from the first in that it receives the (constant) output of the first one. Therefore, it reacts differently in
the two cases – its output rate is smaller when the negative pulse input rate is larger, i.e., it is inhibited
in inverse relation to the strength of the negative stream. Thus the output rate is lower in Case 2 when
there are two input streams of pulses than in Case 1 when only one is present. But since the output
rates are not exactly 0 and 1 there needs to be a dividing point, viz., α as above, to make the decision
about which case holds. Appendix C shows how α can be chosen so that the output rate of the overall
model is below α when two input streams are present and above alpha when only one, or none, is
present as required to implement XOR.

7. Discussion

Discussing the proposition of deep neural nets (DNN) as the primary focus of artificial general
intelligence, Smith asserts that largely as used, DNNs map vectors to vectors without considering
the immediate history of recent inputs nor the time base on which such inputs occur in real
counterparts [2]. In reality however, time matters because the interplay of the nervous system and the
environment occurs via time-varying signals. Any application that really is going to be considered
as AGI will have to work with time-varying inputs to produce time-varying outputs: the world
exists in time, and the reaction of a system exhibiting AGI really has to include time as well, adding
recurrence and spike-coding [2,15]. Our results provide a system-theoretical and simulation modeling
foundation for bringing such considerations beyond current applications.

Although typically considered as deterministic systems, Gelenbe introduced a stochastic model
of ANN that provided a markedly different implementation [11]. Based on his use of the XOR logic
gate we formulated definitions for behavioral realization of memoryless functions with particular
reference to the XOR gate. The definitions of realization turned out to be substantively different for
deterministic and stochastic systems constructed of neuron-inspired components. Our definitions of
realizations fundamentally include temporal and probabilistic characteristics of their inputs, state,
and outputs. Moreover, the realizations of the XOR function that we constructed provide insight into
the temporal and probabilistic characteristics that real neural systems might display.

Considering the temporal characteristics of neural nets in relation to functions they implement,
we formulated a deterministic DEVS version of Gelenbe’s neuron net model and showed how this
model implements the XOR function. Here, we considered timing related to arrival of pulses,
coincidence of pulses, end-to-end time of computation and time before new inputs can be submitted.
We then derived a Markov Continuous Time model [14] from the deterministic version and pointed
out the distinct characteristics of the probabilistic system implementation of XOR. We conclude with
implications about the characteristics of real brain computational behaviors suggested by contrasting
the ANN perspective and systems-based formulation developed here.

System state and timing considerations we discussed include:
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1. Time dispersion of pulses – the input arguments are encoded in pulses over a time base where
inter-arrival times make a difference in the output.

2. Coincidence of pulses – in particular, whether pulses represent arguments from the same
submitted input or subsequent submission depends on their spacing in time.

3. End-to-end computation time – the total processing time in a multi-component concurrent
system depends on relative phasing as well as component timings and may be poorly
estimated by summing up of individual execution cycles.

4. Time for return to ground state – the time that must elapse before a system having performed
a computation is ready to receive new inputs may be longer than its computation time as it
requires all components to return to their ground states.

System state and timing considerations are abstracted away by current neural networks typified
by DNN that are idealizations of intelligent computation, consequently they may miss the mark in
two aspects:

1. As static recognizers of memoryless patterns DNNs may become ultra-capable (analogous to
AlphaGo progress) but as representative of human cognition they may vastly overstress that
one dimension and correspondingly underestimate intelligent computational capabilities in
humans and animals in other respects.

2. As models of real neural processing DNNs do not operate within the system temporal
framework discussed here and therefore may prove impractical in real time applications
which impose time and energy consumption constraints like those just discussed [16].

It is instructive to compare the computation-relevant characteristics of the deterministic and
stochastic versions of the DEVS neuron models we discussed. The deterministic version delivers
directly interpretable outputs within a specific processing time. The Gelenbe stochastic version
formulates inputs and outputs as indefinitely extending streams modelled by Poisson processes.
Practically speaking, obtaining results requires measurement over a sufficiently extended period to
obtain statistical validity and/or to enable a Bayesian or Maximum Likelihood detector to make a
confidence-dependent decision. On the other hand, a probabilistic version of the DEVS neuron can
be formulated that retains the direct input/output encoding but also can give probability estimates for
erroneous output. Some of these models have been explored [8,17] while others explicitly connecting
to leaky integrate-and-fire neurons are under active investigation [18]. Possible applications of DEVS
modeling to the extensive literature on Gelenbe networks are considered in Appendix D. Along
these lines we note that both the deterministic and probabilistic implementations of XOR use the
negative inputs in an essential, although different, manner to identify the (1, 1) input argument and
inhibit the output produced when it occurs. This suggests research to show that XOR cannot be
computed without use of negative inputs which would establish a theoretical reason why inhibition
is fundamentally needed for leaky integrate-and-fire neuron models, a reason that is distinct from the
hidden layer requirement uncovered by Rumelhart [6].

Appendix A. Discrete Event System Specification (DEVS) basic model

A basic Discrete Event System Specification (DEVS) is a mathematical structure

DEVS = (X, Y, S, δext, δint, λ, ta)

Where, X is the set of input events, Y is the set of output events, S is the set of partial states, δext :
Q× X → S is the external transition function with Q = {(s, e) | s ∈ S, 0 ≤ e ≤ ta(s)} the set of total
states with e the elapsed time since the last transition, δint : S → S is the internal transition function,
λ : S→ Y is the output function and ta : S→ R0,+

∞ is the time advance function.
Figure 9 depicts simple trajectories of a DEVS. The latter starts in initial state s0 at time t0 and

schedules an internal event occurring after time advance ta(s0), where value y0 is output and state
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changes to s1 = δint(s0). At time t2, an external event of value x0 occurs changing the state to s2 =

δext(s1, e1, x0) with e1 the elapsed time since the last transition. Then an internal event is scheduled at
time advance ta(s1), and so on.

X

t

S

t

Y

t
ta(s0)

s0

s1

s2

s3

s4

s5

y0

y1

y2
y3

y4

y5

t0 t2 t4

e1 ta(s2) ta(s4) ta(s5)

x1x0

e2

Figure 9. Simple DEVS trajectories.

Appendix B. Simulation Relation

Consider a function having same domain and range,

f : X → X

e.g., an XOR function where X = {0, 1, 2}, f (x) = x + 1(mod2).
Let,

g : ΩX → X

i.e., specify decoding of segments to domain and range of f .
Let,

βq : ΩX → ΩX

be the I/O Function of state q mapping input segments to output segments.

If βq(ω) = ρ we require g(ρ) = f (g(ω)) i.e., input segment ω mapped to output segment ρ

when decoded is required to satisfy f , i.e., g(βq(ω)) = f (g(ω)). Applying the requirement to
DEVS segments of pulses, let g : DEVS(p) → {0, 1, 2}, i.e., g(ω) = number of pulses in ω requiring
βq : DEVS(p)→ DEVS(p), i.e.,number of pulses in βq(ω) = f (number of pulses in ω).

Appendix C. Behavior of the Markov Model

We first reduce the infinite state Matrix model to a 2-state version that is equivalent with respect
to the output pulse rate in steady state. As in Figure 10, all the non-zero states are lumped into a
single firing state, sFire, and we will interpret each of the probabilities in terms of the original rates as
follows:

1. There is only one way to transition from s0 to sFire and that is by going from s0 to s1 in the
original model which happens with posInputRate. Therefore P01 = posInputRate.
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2. Similarly, there is only one way to transition from sFire to s0 and this happens with
negInputRate + FireRate. Therefore P10 = negInputRate + FireRate.

3. The probability of remaining in the sFire, P11 = 1− P10 (these must sum to 1).
4. Similarly, P00 = 1− P01.

Figure 10. Reduction to 2 state Markov Matrix Model.

Now in the reduced model the steady state probabilities are easy to compute in terms of the
transition probabilities. Indeed, the probability of being in the firing state, PFire = P01

P01+P10 = 1 for
P01 ≈ 1.

And the rate of producing output pulses

OutputRate = PFire × FireRate =
posInputRate

posInputRate + negInputRate + FireRate
× FireRate

The case of saturation occurs when the positive input rate is “very large" compared to the rates
that lower the state, especially when the negative input rate is 0, so that PFire = 1 and OutputRate =

FireRate.
Thus the output of the first component saturates at the maximum, FireRate. This is input to the

second component so that we have for it:

OutputRate = PFire × FireRate
= FireRate

FireRate+negInputRate+FireRate × FireRate
= FireRate

2+negInputRate

So we see that the output rate is inversely related to the negative pulse input which, by design,
the second component receives but not the first.

Appendix D. Possible applications of DEVS modeling to RNNs

Random neural network (RNN), a probabilistic model inspired by neuronal stochastic spiking
behavior have received much examination. Here we focus on two main extensions, synchronous
interaction and spike classes. Gelenbe developed an extension of the RNN to the case when
synchronous interactions can occur modeling synchronous firing by large ensembles of cells.
Included are recurrent networks having both conventional excitatory-inhibitory interactions and
synchronous interactions. Although modeling the ability to propagate information very fast over
relatively large distances in neuronal networks, the work focuses on developing a related learning
algorithm. Synchronous interactions take the form of a joint excitation by a pair of cells on a third
cell. One can assign Q(i, j, m) as the probability that when cell i fires then if cell j is excited it will
also fire immediately, with an excitatory spike being sent to cell m. This synchronous behavior
can be extended to an arbitrary number of cells that can simultaneously fire. DEVS modeling
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includes zero time advance possibility to capture such behavior as was illustrated in application
to physical action-at-a-distance by Zeigler [19]. The standard RNN approach has been concerned
with equilibrium analysis and it may be interesting to see how the DEVS equivalent modeling can
throw light on the plausibility of such zero time advances and any difference they would make in the
temporal I/O behavior of interest to us here.

RNNs with multiple spike classes of signals were introduced to represent interconnected
neurons which simultaneously process multiple streams of data such as the color information of
images, or networks which simultaneously process streams data from multiple sensors. One network
was used to generate a synthetic texture that imitates the original image. To exchange spikes of
different types, neurons have potentials that generate corresponding excitatory spikes in a manner
similar to the single potential case. Inhibitory spikes are of only one type and affect class potential in
proportion to their levels. DEVS models can represent such neurons, however there seems to be no
evidence for biological plausibility of such structure. It would be interesting to see if the structure
and behavior manifested by multi-class RNNs can be realized by groups of ordinary neurons in the
roles of spike processing classes, e.g., interacting cell assemblies specifically tuned to red, green, and
blue color wavelengths.
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