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Abstract. In the paper, the author presents explicit and unified expressions

for a sequence of improper integrals in terms of the beta functions and the
Wallis ratios. Hereafter, the author derives integral representations for the

Catalan numbers originating from combinatorics.

1. Introduction

Let a be a positive number. For n ≥ 0, define

In =

∫ a

−a
xn
√
a+ x

a− x
dx. (1)

In [1, Section 3], Dana-Picard and Zeitoun computed I0 = aπ and found a closed
form of In for n ∈ N in three steps:

(1) establishing a formula of recurrence between In and In+1 in terms of

Sn =

∫ π/2

−π/2
sinn θ d θ; (2)

(2) establishing an equation for In in terms of Sn;
(3) and establishing different expressions for odd values and even values of n.

The aim of this note is to discuss once again the sequence In and correct some
errors and typos appeared in [1, Section 3].

2. Explicit and unified expressions for In

The sequence In can be computed by several methods below.
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2 F. QI

Theorem 2.1. For n ≥ 0, the sequence In can be computed by

In = an+1π

[
1 + (−1)n

n

1

B
(
1
2 ,

n
2

) +
1 + (−1)n+1

n+ 1

1

B
(
1
2 ,

n+1
2

)], (3)

where

B(p, q) =

∫ 1

0

tp−1(1− t)q−1 d t =

∫ ∞
0

tp−1

(1 + t)p+q
d t =

Γ(p)Γ(q)

Γ(p+ q)
(4)

and

Γ(z) =

∫ ∞
0

tz−1e−t d t

for <(p),<(q) > 0 and <(z) > 0 denote the Euler integrals of the second kinds (or
say, the classical beta and gamma functions) respectively.

Proof. By some properties of definite integral and straightforward computation, we
can write

In =

∫ 0

−a
xn
√
a+ x

a− x
dx+

∫ a

0

xn
√
a+ x

a− x
dx

=

∫ 0

a

(−y)n

√
a+ (−y)

a− (−y)
d(−y) +

∫ a

0

xn
√
a+ x

a− x
dx

=

∫ a

0

(−1)nyn
√
a− y
a+ y

d y +

∫ a

0

xn
√
a+ x

a− x
dx

=

∫ a

0

xn
[
(−1)n

√
a− x
a+ x

+

√
a+ x

a− x

]
dx

=

∫ a

0

xn
(a+ x) + (−1)n(a− x)√

a2 − x2
dx

=

∫ a

0

xn
a[1 + (−1)n] + x[1− (−1)n]√

a2 − x2
dx

= a[1 + (−1)n]

∫ a

0

xn√
a2 − x2

dx+ [1− (−1)n]

∫ a

0

xn+1

√
a2 − x2

dx.

In [8, Theorem 3.1], it was obtained that∫ a

0

xn√
a2 − x2

dx =
√
π an

Γ
(
n
2 + 1

2

)
nΓ
(
n
2

)
for a > 0 and n ≥ 0. Accordingly, considering

Γ

(
1

2

)
=
√
π , (5)

we acquire

In = a[1 + (−1)n]
√
π an

Γ
(
n
2 + 1

2

)
nΓ
(
n
2

) + [1− (−1)n]
√
π an+1 Γ

(
n+1
2 + 1

2

)
(n+ 1)Γ

(
n+1
2

)
=
√
π an+1

(
[1 + (−1)n]

Γ
(
n+1
2

)
nΓ
(
n
2

) + [1− (−1)n]
Γ
(
n
2 + 1

)
(n+ 1)Γ

(
n+1
2

))
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= an+1π

[
1 + (−1)n

n

Γ
(
n+1
2

)
Γ
(
1
2

)
Γ
(
n
2

) +
1− (−1)n

n+ 1

Γ
(
n
2 + 1

)
Γ
(
1
2

)
Γ
(
n+1
2

)]

= an+1π

[
1 + (−1)n

n

1

B
(
1
2 ,

n
2

) +
1 + (−1)n+1

n+ 1

1

B
(
1
2 ,

n+1
2

)].
The proof of Theorem 2.1 is complete. �

Theorem 2.2. For n ≥ 0, the sequence In can be computed by

In =
1

2
an+1

(
[1 + (−1)n]B

(
1

2
,
n+ 1

2

)
+
[
1 + (−1)n+1

]
B

(
1

2
,
n+ 2

2

))
. (6)

Proof. Changing the variable of integration by x = at in (1) and using some other
properties of definite integral give

In =

∫ 1

−1
(at)n

√
a+ at

a− at
a d t

= an+1

∫ 1

−1
tn
√

1 + t

1− t
d t

= an+1

(∫ 0

−1
tn
√

1 + t

1− t
d t+

∫ 1

0

tn
√

1 + t

1− t
d t

)
= an+1

[∫ 1

0

(−s)n
√

1− s
1 + s

d s+

∫ 1

0

tn
√

1 + t

1− t
d t

]
= an+1

∫ 1

0

tn
[
(−1)n

√
1− t
1 + t

+

√
1 + t

1− t

]
d t

= an+1

∫ 1

0

tn
[
(−1)n

1− t√
1− t2

+
1 + t√
1− t2

]
d t

= an+1

(
[1 + (−1)n]

∫ 1

0

tn√
1− t2

d t+ [1− (−1)n]

∫ 1

0

tn+1

√
1− t2

d t

)
= an+1

(
[1 + (−1)n]

∫ π/2

0

sinn s√
1− sin2 s

cos sd s

+ [1− (−1)n]

∫ π/2

0

sinn+1 s√
1− sin2 s

cos sd s

)
= an+1

(
[1 + (−1)n]

∫ π/2

0

sinn sd s+ [1− (−1)n]

∫ π/2

0

sinn+1 sd s

)
.

Further making use of the formula∫ π/2

0

sint xdx =
1

2
B

(
t+ 1

2
,

1

2

)
, t > −1

in [8, Remark 6.4] yields

In = an+1

(
[1 + (−1)n]

1

2
B

(
1

2
,
n+ 1

2

)
+ [1− (−1)n]

1

2
B

(
1

2
,
n+ 2

2

))
=

1

2
an+1

(
[1 + (−1)n]B

(
1

2
,
n+ 1

2

)
+
[
1 + (−1)n+1

]
B

(
1

2
,
n+ 2

2

))
.

The proof of Theorem 2.2 is complete. �
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4 F. QI

Corollary 2.1. For m ≥ 0, the sequences I2m and I2m+1 can be explicitly computed
by

I2m = πa2m+1 (2m− 1)!!

(2m)!!

and

I2m+1 = πa2(m+1) (2m+ 1)!!

(2m+ 2)!!
.

Proof. From the recurrence relation

Γ(x+ 1) = xΓ(x), x > 0 (7)

and the identity (5), we obtain

Γ

(
m+

1

2

)
=

(2m− 1)!!

2m
Γ

(
1

2

)
=

(2m− 1)!!

2m
√
π .

By this equality and the last expression in (4), we derive

B

(
1

2
,
n

2

)
=

Γ
(
1
2

)
Γ
(
n
2

)
Γ
(
n+1
2

) =


Γ
(
1
2

)
Γ(m)

Γ
(
m+ 1

2

) , n = 2m

Γ
(
1
2

)
Γ
(
m+ 1

2

)
Γ(m+ 1)

, n = 2m+ 1

=


√
π (m− 1)!

(2m−1)!!
2m

√
π
, n = 2m

√
π (2m−1)!!

2m
√
π

m!
, n = 2m+ 1

=


2

(2m− 2)!!

(2m− 1)!!
, n = 2m;

π
(2m− 1)!!

(2m)!!
, n = 2m+ 1.

Substituting this into (6) reveals

I2m =
1

2
a2m+1

[
2B

(
1

2
,

2m+ 1

2

)]
= a2m+1π

(2m− 1)!!

(2m)!!

and

I2m+1 =
1

2
a2(m+1)

[
2B

(
1

2
,

2m+ 3

2

)]
= a2(m+1)π

(2m+ 1)!!

(2m+ 2)!!
.

The proof of Corollary 2.1 is complete. �

3. Integral representations for the Catalan numbers

The Catalan numbers Cn for n ≥ 0 form a sequence of natural numbers that
occur in various counting problems in combinatorial mathematics. The nth Catalan
number can be expressed in terms of the central binomial coefficients

(
2n
n

)
by

Cn =
1

n+ 1

(
2n

n

)
. (8)

Theorem 3.1. For n ≥ 0 and a > 0, the Catalan numbers Cn can be represented
by

Cn =
1

π

4n

n+ 1

1

a2n+1

∫ a

−a
x2n
√
a+ x

a− x
dx

=
1

π

22n+1

n+ 1

1

a2n

∫ a

0

x2n√
a2 − x2

dx

=
1

π

22n+1

n+ 1

∫ π/2

0

sin2n xdx

(9)
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and

Cn =
1

π

22n+1

2n+ 1

1

a2n+2

∫ a

−a
x2n+1

√
a+ x

a− x
dx

=
1

π

22n+2

2n+ 1

1

a2n+2

∫ a

0

x2n+2

√
a2 − x2

dx

=
1

π

22n+2

2n+ 1

∫ π/2

0

sin2n+2 xdx.

(10)

Proof. From the recurrence relation (7) and the identity (5), it is not difficult to
show that the Catalan numbers Cn can be expressed in terms of the gamma function
Γ by

Cn =
4nΓ(n+ 1/2)√
π Γ(n+ 2)

, n ≥ 0.

This implies that

Cn =
1

π

4n

n+ 1
B

(
1

2
, n+

1

2

)
. (11)

Taking n = 2p in (6) and utilizing (11) lead to

I2p = a2p+1B

(
1

2
,

2p+ 1

2

)
= a2p+1π

p+ 1

4p
Cn

which is equivalent to

Cn =
4n

n+ 1

1

a2n+1π
I2n =

1

π

4n

n+ 1

1

a2n+1

∫ a

−a
x2n
√
a+ x

a− x
dx.

The first formula in (9) thus follows.
By similar argument to the deduction of (11), we can discover

Cn =
4n+1

(2n+ 1)(2n+ 2)

1

B
(
1
2 , n+ 1

) , n ≥ 0.

Employing this identity and setting n = 2p+ 1 in (3) figures out

I2p+1 = a2p+2 2π

2p+ 2

1

B
(
1
2 , p+ 1

) = a2p+2 2π

2p+ 2

(2p+ 1)(2p+ 2)

4p+1
Cp

which can be rearranged as

Cp =
1

a2p+2

1

π

22p+1

2p+ 1
I2p+1 =

1

π

1

a2p+2

22p+1

2p+ 1

∫ a

−a
x2p+1

√
a+ x

a− x
dx.

The first formula in (10) is thus proved.
The rest integral representations follow from techniques used in the proofs of

Theorems (2.1) and (2.2) and from changing variable of integration. �

4. Remarks

Finally, we state several remarks on our main results.

Remark 4.1. The expressions in Corollary 2.1 and the integral representation (9)
correct [1, Proposition 3.1 and Corollary 3.2] respectively.
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6 F. QI

Remark 4.2. Since

B

(
1

2
,
t+ 1

2

)
B

(
1

2
,
t

2

)
=

2π

t

for t > 0, the formulas (3) and (6) can be transferred to each other. However, the
formula (6) looks simpler.

Remark 4.3. Considering (8), we can rewritten the integral representations in (9)
and (10) as (

2n

n

)
=

1

π

4n

a2n+1

∫ a

−a
x2n
√
a+ x

a− x
dx

=
1

π

22n+1

a2n

∫ a

0

x2n√
a2 − x2

dx

=
1

π
22n+1

∫ π/2

0

sin2n x dx

and (
2n

n

)
=

1

π

22n+1(n+ 1)

2n+ 1

1

a2n+2

∫ a

−a
x2n+1

√
a+ x

a− x
dx

=
1

π

22n+2(n+ 1)

2n+ 1

1

a2n+2

∫ a

0

x2n+2

√
a2 − x2

dx

=
1

π

22n+2(n+ 1)

2n+ 1

∫ π/2

0

sin2n+2 x dx.

for n ≥ 0.

Remark 4.4. It is well known that the Wallis ratio is defined by

Wn =
(2n− 1)!!

(2n)!!
=

(2n)!

22n(n!)2
=

1√
π

Γ
(
n+ 1/2

)
Γ(n+ 1)

, n ∈ N.

As a result, we have
I2m = πa2m+1Wm

and
I2m+1 = πa2m+2Wm+1

for m ≥ 0.
The Wallis ratio has been studied and applied by many mathematicians. For

more information, please refer to [2, 3, 7, 12, 14], for example, and plenty of litera-
ture therein.

Remark 4.5. In [3], the formula∫ π/2

0

sint xdx =

√
π

2

Γ
(
t+1
2

)
Γ
(
t+2
2

) , t > −1 (12)

was stated. See also [7, p. 16, Eq. (2.18)]. In [6, p. 142, Eq. 5.12.2], the formula∫ π/2

0

sin2a−1 θ cos2b−1 θ d θ =
1

2
B(a, b), <(a),<(b) > 0 (13)

was listed. By (12) or (13), we can find that the quantity Sn defined in (2) is

Sn =

∫ 0

−π/2
sinn xdx+

∫ π/2

0

sinn xdx
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=

∫ π/2

0

(−1)n sinn xdx+

∫ π/2

0

sinn xdx

=
1 + (−1)n

2
B

(
n+ 1

2
,

1

2

)
.

Remark 4.6. In [11, Theorem 2.3], among other things, the integral formulas∫ b

a

(
b− t
t− a

)λ
d t = (b− a)

λπ

sin(λπ)
,∫ b

a

(
b− t
t− a

)λ
1

t
d t =

π

sin(λπ)

[(
b

a

)λ
− 1

]
,∫ b

a

(
b− t
t− a

)λ
1

tk+1
d t =

π

sin(λπ)

(
b

a

)λ
1

ak

k∑
`=0

〈λ〉`
`!

(
k − 1

`− 1

)(
1− a

b

)`
for b > a > 0, k ∈ N, and λ ∈ (−1, 1) \ {0} were derived, where

〈x〉n =


n−1∏
k=0

(x− k), n ≥ 1

1, n = 0

is called the falling factorial. In [11, Remark 4.4], the integral formula∫ b

a

(
b− t
t− a

)λ
1

t
ln
b− t
t− a

d t

=


π

sin(λπ)

{(
b

a

)λ
ln
b

a
− π cot(λπ)

[(
b

a

)λ
− 1

]}
, λ 6= 0

1

2

(
ln
b

a

)2

, λ = 0

was concluded from [11, Theorem 2.3]. By comparing the forms of these integrals
and In, we naturally propose a problem: can one explicitly compute the integrals∫ b

a

(
b− t
t− a

)λ
tα d t and

∫ b

a

tα
(
b− t
t− a

)λ
ln
b− t
t− a

d t

for

α ∈

{
R, b > a > 0

N, b > 0 > a

and λ ∈ (−1, 1)?

Remark 4.7. In recent years, the Catalan numbers Cn has been analytically gen-
eralized and studied in [4, 5, 9, 10, 13, 15, 16, 17] and closely-related references
therein.
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