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Abstract. In the paper, the authors find closed forms for derangement num-

bers in terms of the Hessenberg determinants, discover a recurrence relation of
derangement numbers, present a formula for any higher order derivative of the

exponential generating function of derangement numbers, and compute some

related Hessenberg and tridiagonal determinants.

1. Main results

A square matrix H = (hij)n×n is called a tridiagonal matrix if hij = 0 for all
pairs (i, j) such that |i − j| > 1. A tridiagonal determinant is a determinant with
nonzero elements only on the diagonal and slots horizontally or vertically adjacent
the diagonal. See the paper [6] and closely-related references therein.
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A matrix H = (hij)n×n is called a lower (or an upper, respectively) Hessenberg
matrix if hij = 0 for all pairs (i, j) such that i + 1 < j (or j + 1 < i, respectively).
See the paper [7] and closely-related references therein.

In mathematics, a closed expression is a mathematical form that can be evaluated
in a finite number of operations. It may contain constants, variables, four arithmetic
operations, and elementary functions, but usually no limit.

In combinatorial mathematics, a derangement is a permutation of the elements
of a set, such that no element appears in its original position. The number of
derangements of a set of size n is called the derangement number and usually
denoted by !n. The problem of counting derangements was first considered in 1708
and solved in 1713 both by Pierre Raymond de Montmort, as did Nicholas Bernoulli
at about the same time. The first eleven derangement numbers !n for 0 ≤ n ≤ 10
are 1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961.

Derangement numbers !n can be generated by the exponential generating func-
tion

D(x) =
e−x

1− x
=

1

ex(1− x)
=

∞∑
n=0

!n
xn

n!
. (1)

For more and detailed information on derangement numbers !n, please refer to [1,
2, 17, 18] and plenty of references therein.

In the papers [8, 14, 15], the authors recovered that derangement numbers !n
can be represented by a tridiagonal (n + 1)× (n + 1) determinant

!n = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 0 0 0 . . . 0 0 0
0 0 1 0 0 . . . 0 0 0
0 −1 1 1 0 . . . 0 0 0
0 0 −2 2 1 . . . 0 0 0
0 0 0 −3 3 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . n− 3 1 0
0 0 0 0 0 . . . −(n− 2) n− 2 1
0 0 0 0 0 . . . 0 −(n− 1) n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2)

for n ∈ {0} ∪ N.
In this paper, by considering the generating function 1

ex(1−x) in (1), we represent

derangement numbers !n in terms of the Hessenberg determinants as follows.

Theorem 1. For n ≥ 0, derangement numbers !n can be computed by

!n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0 0 0
0 0 −1 . . . 0 0 0

0
(
2
0

)
0 . . . 0 0 0

0
(
3
0

)
2

(
3
1

)
. . . 0 0 0

...
...

...
. . .

...
...

...

0
(
n−3
0

)
(n− 4)

(
n−3
1

)
(n− 5) . . . −1 0 0

0
(
n−2
0

)
(n− 3)

(
n−2
1

)
(n− 4) . . . 0 −1 0

0
(
n−1
0

)
(n− 2)

(
n−1
1

)
(n− 3) . . .

(
n−1
n−3
)

0 −1

0
(
n
0

)
(n− 1)

(
n
1

)
(n− 2) . . .

(
n

n−3
)
2
(

n
n−2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |eij |(n+1)×(n+1),

(3)
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where e1,1 = 1, ei,1 = 0 for 2 ≤ i ≤ n + 1, and

eij =


(
i− 1

j − 2

)
(i− j), i− j ≥ 1

0, i− j < 1

for 1 ≤ n + 1 and 2 ≤ j ≤ n + 1. Consequently,

!n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 . . . 0 0 0 0(
2
0

)
0 . . . 0 0 0 0(

3
0

)
2

(
3
1

)
. . . 0 0 0 0

...
...

. . .
...

...
...

...(
n−3
0

)
(n− 4)

(
n−3
1

)
(n− 5) . . . 0 −1 0 0(

n−2
0

)
(n− 3)

(
n−2
1

)
(n− 4) . . .

(
n−2
n−4
)

0 −1 0(
n−1
0

)
(n− 2)

(
n−1
1

)
(n− 3) . . .

(
n−1
n−4
)
2

(
n−1
n−3
)

0 −1(
n
0

)
(n− 1)

(
n
1

)
(n− 2) . . .

(
n

n−4
)
3
(

n
n−3
)
2
(

n
n−2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |qij |n×n

(4)

for n ∈ N, where

qij =


(

i

j − 1

)
(i− j), i− j ≥ 1

0, i− j < 1

for 1 ≤ n and 2 ≤ j ≤ n.

As consequences of Theorem 1 and the equation (1), the following recurrence
relations can be discovered readily.

Theorem 2. Derangement numbers !n meet

!n =

n−2∑
i=0

(
n

i

)
(n− i− 1)(!i), n ≥ 2 (5)

and

n! =

n∑
k=0

(
n

k

)
(!k) =

n∑
k=0

(
n

k

)
[!(n− k)], n ≥ 0. (6)

By induction, we also present an explicit formula for the nth derivative of the
exponential generating function D(x) as follows.

Theorem 3. For n ∈ {0} ∪ N, the nth derivative of the generating function D(x)
can be computed by

dn

dxn

(
e−x

1− x

)
=

e−x

(1− x)n+1

n∑
i=0

an,ix
i, (7)

where

an,i =
〈n〉i[!(n− i)]

i!
(8)

and

〈x〉n =

n−1∏
k=0

(x− k) =

{
x(x− 1) · · · (x− n + 1), n ≥ 1

1, n = 0
(9)

stands for the falling factorial.
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As a consequence of Theorem 3, a formula for some Hessenberg and tridiagonal
determinants are established as follows.

Corollary 1. For n ∈ N, let

eij(x) =


(

i

j − 1

)
(i− j + x), i− j + 1 ≥ 0

0, i− j + 1 < 0

and

hij(x) =


1− x, i− j = −1,

1− i− x, i− j = 0,

1− i, i− j = 1,

0, i− j 6= 0,±1

for all 1 ≤ i, j ≤ n. Then the Hessenberg and tridiagonal determinants |eij(x)|n×n
and |hij(x)|n×n can be computed by

|eij(x)|n×n = (−1)n|hij(x)|n×n =

n∑
i=0

〈n〉i[!(n− i)]
xi

i!
, (10)

where 〈n〉i is defined by (9).

2. A lemma

For supplying a concise proof for Theorem 1, we need the following lemma which
was concluded in [9, Section 2.2, p. 849], [10, p. 94], [13, Remark 6], and [16,
Lemma 2.1] from [3, p. 40, Exercise 5)].

Lemma 1. Let u(x) and v(x) 6= 0 be differentiable functions, let U(n+1)×1(x) be

an (n + 1) × 1 matrix whose elements uk,1(x) = u(k−1)(x) for 1 ≤ k ≤ n + 1, let
V(n+1)×n(x) be an (n + 1)× n matrix whose elements

vi,j(x) =


(
i− 1

j − 1

)
v(i−j)(x), i− j ≥ 0

0, i− j < 0

for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n, and let |W(n+1)×(n+1)(x)| denote the lower
Hessenberg determinant of the (n + 1)× (n + 1) lower Hessenberg matrix

W(n+1)×(n+1)(x) =
[
U(n+1)×1(x) V(n+1)×n(x)

]
.

Then the nth derivative of the ratio u(x)
v(x) can be computed by

dn

dxn

[
u(x)

v(x)

]
= (−1)n

∣∣W(n+1)×(n+1)(x)
∣∣

vn+1(x)
. (11)

We remark that Lemma 1 is an effectual tool to express some mathematical
quantities such as the Bernoulli numbers and polynomials, the Euler numbers and
polynomials, and the Fibonacci numbers and polynomials as the Hessenberg or
tridiagonal determinants. For more information, please refer to [9, 10, 12, 16] and
closely-related references therein.
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3. Proofs of Theorems 1 to 3 and Corollary 1

Now we are in a position to provide proofs for Theorems 1 to 3 and Corollary 1
respectively.

Proof of Theorem 1. Let v(x) = ex(1− x). It is not difficult to verify by induction
that

v(k)(x) = −ex(k − 1 + x)→ 1− k

as x→ 0 for k ≥ 0.
Applying u(x) = 1 and v(x) = ex(1−x) in Lemma 1 yields that u1,1(x) = 1 and

uk,1(x) = 0 for 2 ≤ k ≤ n + 1, while

vi,j(x) =


(
i− 1

j − 1

)
v(i−j)(x), i− j ≥ 0

0, i− j < 0

=

−
(
i− 1

j − 1

)
ex(i− j − 1 + x), i− j ≥ 0

0, i− j < 0

→

−
(
i− 1

j − 1

)
(i− j − 1), i− j ≥ 0

0, i− j < 0

as x → 0 for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n. Consequently, by virtue of the
formula (11), we have

dn D(x)

dxn
=

(−1)n

[ex(1− x)]n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −ex(−1 + x) 0

0 −
(
1
0

)
exx −ex(−1 + x)

0 −
(
2
0

)
ex(1 + x) −

(
2
1

)
exx

0 −
(
3
0

)
ex(2 + x) −

(
3
1

)
ex(1 + x)

...
...

...

0 −
(
n−3
0

)
ex(n− 4 + x) −

(
n−3
1

)
ex(n− 5 + x)

0 −
(
n−2
0

)
ex(n− 3 + x) −

(
n−2
1

)
ex(n− 4 + x)

0 −
(
n−1
0

)
ex(n− 2 + x) −

(
n−1
1

)
ex(n− 3 + x)

0 −
(
n
0

)
ex(n− 1 + x) −

(
n
1

)
ex(n− 2 + x)

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0

. . . 0 0 0
. . .

...
...

...
. . . −ex(−1 + x) 0 0

. . . −
(
n−2
n−3
)
exx −ex(−1 + x) 0

. . . −
(
n−1
n−3
)
ex(1 + x) −

(
n−1
n−2
)
exx −ex(−1 + x)

. . . −
(

n
n−3
)
ex(2 + x) −

(
n

n−2
)
ex(1 + x) −

(
n

n−1
)
exx

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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→ (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −(−1) 0 . . . 0 0
0 0 −(−1) . . . 0 0

0 −
(
2
0

)
0 . . . 0 0

0 −
(
3
0

)
2 −

(
3
1

)
. . . 0 0

...
...

...
. . .

...
...

0 −
(
n−3
0

)
(n− 4) −

(
n−3
1

)
(n− 5) . . . 0 0

0 −
(
n−2
0

)
(n− 3) −

(
n−2
1

)
(n− 4) . . . −(−1) 0

0 −
(
n−1
0

)
(n− 2) −

(
n−1
1

)
(n− 3) . . . 0 −(−1)

0 −
(
n
0

)
(n− 1) −

(
n
1

)
(n− 2) . . . −

(
n

n−2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0 0 0
0 0 −1 . . . 0 0 0

0
(
2
0

)
0 . . . 0 0 0

0
(
3
0

)
2

(
3
1

)
. . . 0 0 0

...
...

...
. . .

...
...

...

0
(
n−3
0

)
(n− 4)

(
n−3
1

)
(n− 5) . . . −1 0 0

0
(
n−2
0

)
(n− 3)

(
n−2
1

)
(n− 4) . . . 0 −1 0

0
(
n−1
0

)
(n− 2)

(
n−1
1

)
(n− 3) . . .

(
n−1
n−3
)

0 −1

0
(
n
0

)
(n− 1)

(
n
1

)
(n− 2) . . .

(
n

n−3
)
2
(

n
n−2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
as x→ 0 for n ≥ 0. Therefore, since D(x) is a generating function of !n, as showed
in (1), we obtain

!n = lim
x→0

dn D(x)

dxn
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0 0
0 0 −1 . . . 0 0

0
(
2
0

)
0 . . . 0 0

0
(
3
0

)
2

(
3
1

)
. . . 0 0

...
...

...
. . .

...
...

0
(
n−3
0

)
(n− 4)

(
n−3
1

)
(n− 5) . . . 0 0

0
(
n−2
0

)
(n− 3)

(
n−2
1

)
(n− 4) . . . −1 0

0
(
n−1
0

)
(n− 2)

(
n−1
1

)
(n− 3) . . . 0 −1

0
(
n
0

)
(n− 1)

(
n
1

)
(n− 2) . . .

(
n

n−2
)

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The proof of Theorem 1 is complete. �

Proof of Theorem 2. The recurrence relation (5) immediately follows from expand-
ing the determinant (3) according to the last columns consecutively.

The equation (1) can also be rewritten as

1

1− x
= ex

∞∑
n=0

!n
xn

n!
,

∞∑
n=0

xn =

∞∑
n=0

xn

n!

∞∑
n=0

!n
xn

n!
,

∞∑
n=0

xn =

∞∑
n=0

[
n∑

k=0

1

k!

!(n− k)

(n− k)!

]
xn =

∞∑
n=0

[
n∑

k=0

!k

k!

1

(n− k)!

]
xn.

As a result, by equating the last equality and rearranging, we obtain the identity (6).
The proof of Theorem 2 is complete. �

Proof of Theorem 3. By the equation (1), it is not difficult to see that the equality
an,0 =!n holds for all n ≥ 0.
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A direct computation gives

d

dx

(
e−x

1− x

)
=

e−x

(1− x)2
x and

d2

dx2

(
e−x

1− x

)
=

e−x

(1− x)3
(
1 + x2

)
.

It is clear that, when n = 0, 1, 2, the equality (7) is valid respectively.
Assume that the equality (7) is valid for some n ≥ 3. By this inductive hypoth-

esis, we have

dn+1

dxn+1

(
e−x

1− x

)
=

d

dx

[
dn

dxn

(
e−x

1− x

)]
=

d

dx

[
e−x

(1− x)n+1

n∑
i=0

an,ix
i

]

=
e−x

(1− x)n+2

[
(n + x)

n∑
i=0

an,ix
i − (x− 1)

n∑
i=1

an,iix
i−1

]

=
e−x

(1− x)n+2

[
n

n∑
i=0

an,ix
i +

n∑
i=0

an,ix
i+1 −

n∑
i=1

an,iix
i +

n∑
i=1

an,iix
i−1

]

=
e−x

(1− x)n+2

[
n

n∑
i=0

an,ix
i +

n+1∑
i=1

an,i−1x
i −

n∑
i=1

an,iix
i +

n−1∑
i=0

an,i+1(i + 1)xi

]

=
e−x

(1− x)n+2

[
nan,0 + n

n−1∑
i=1

an,ix
i + nan,nx

n +

n−1∑
i=1

an,i−1x
i + an,n−1x

n

+an,nx
n+1 −

n−1∑
i=1

an,iix
i − an,nnx

n + an,1 +

n−1∑
i=1

an,i+1(i + 1)xi

]

=
e−x

(1− x)n+2

[
nan,0 + an,1 +

n−1∑
i=1

[
an,i−1 + (n− i)an,i + (i + 1)an,i+1

]
xi

+ an,n−1x
n + an,nx

n+1

]
and

dn+1

dxn+1

(
e−x

1− x

)
=

e−x

(1− x)n+2

n+1∑
i=0

an+1,ix
i.

Equating the above two equalities yields

an+1,0 = nan,0 + an,1, (12)

an+1,n = an,n−1, (13)

an+1,n+1 = an,n, (14)

and

an+1,i = an,i−1 + (n− i)an,i + (i + 1)an,i+1, 1 ≤ i ≤ n− 1. (15)

Since a1,0 = 0 and a0,0 = a1,1 = 1, the recurrence relations (13) and (14) implies
an,n−1 = 0 and an,n = 1.

From (12) and an,0 =!n, it follows that

an,1 = an+1,0 − nan,0 =!(n + 1)− n(!n) = n[!(n− 1)],

where the well-known recurrence relation

!n = (n− 1)[!(n− 1)+!(n− 2)], n ≥ 2 (16)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2016                   doi:10.20944/preprints201610.0035.v1

Peer-reviewed version available at RACSAM 2017; doi:10.1007/s13398-017-0401-z

http://dx.doi.org/10.20944/preprints201610.0035.v1
https://doi.org/10.1007/s13398-017-0401-z


8 F. QI, J.-L. ZHAO, AND B.-N. GUO

was employed.
By virtue of the recurrence relations (15) and (16) and the identities an,0 =!n

and an,1 = n[!(n− 1)], we obtain

an,2 =
an+1,1 − an,0 − (n− 1)an,1

2
=

(n + 1)(!n)−!n− (n− 1)n[!(n− 1)]

2

=
n(!n)− (n− 1)n[!(n− 1)]

2

=
n{!n− (n− 1)[!(n− 1)]}

2
=

n(n− 1)[!(n− 2)]

2
.

Similarly, we have

an,3 =
an+1,2 − an,1 − (n− 2)an,2

3

=
1

3

{
(n + 1)n[!(n− 1)]

2
− n[!(n− 1)]− (n− 2)

n(n− 1)[!(n− 2)]

2

}
=

1

3

{
(n− 1)n[!(n− 1)]

2
− (n− 2)

n(n− 1)[!(n− 2)]

2

}
=

(n− 1)n

6
{[!(n− 1)]− (n− 2)[!(n− 2)]} =

n(n− 1)(n− 2)[!(n− 3)]

6
and

an,4 =
an+1,3 − an,2 − (n− 3)an,3

4
=

1

4

{
(n + 1)n(n− 1)[!(n− 2)]

6

−n(n− 1)[!(n− 2)]

2
− (n− 3)

n(n− 1)(n− 2)[!(n− 3)]

6

}
=

n(n− 1)(n− 2)

24
{[!(n− 2)]− (n− 3)[!(n− 3)]}

=
n(n− 1)(n− 2)(n− 3)[!(n− 4)]

24
.

Inductively, we conclude the relation (8). The proof of Theorem 3 is complete. �

Proof of Corollary 1. From the proof of Theorem 1, it follows that

dn

dxn

(
e−x

1− x

)
=

dn

dxn

[
1

ex(1− x)

]
=

1

(1− x)n+1ex

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
1
0

)
x −1 + x . . . 0 0(

2
0

)
(1 + x)

(
2
1

)
x . . . 0 0(

3
0

)
(2 + x)

(
3
1

)
(1 + x) . . . 0 0

...
...

. . .
...

...(
n−3
0

)
(n− 4 + x)

(
n−3
1

)
(n− 5 + x) . . . 0 0(

n−2
0

)
(n− 3 + x)

(
n−2
1

)
(n− 4 + x) . . . −1 + x 0(

n−1
0

)
(n− 2 + x)

(
n−1
1

)
(n− 3 + x) . . .

(
n−1
n−2
)
x −1 + x(

n
0

)
(n− 1 + x)

(
n
1

)
(n− 2 + x) . . .

(
n

n−2
)
(1 + x)

(
n

n−1
)
x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

e−x

(1− x)n+1
|eij(x)|n×n

for n ∈ N. Combining this with Theorem 3 leads to the equality constituted by the
very ends of (10).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 October 2016                   doi:10.20944/preprints201610.0035.v1

Peer-reviewed version available at RACSAM 2017; doi:10.1007/s13398-017-0401-z

http://dx.doi.org/10.20944/preprints201610.0035.v1
https://doi.org/10.1007/s13398-017-0401-z


CLOSED FORMS FOR DERANGEMENT NUMBERS 9

Applying u(x) = e−x and v(x) = 1− x in Lemma 1 gives

uk,1 = (e−x)(k−1) = (−1)k−1e−x → (−1)k−1

for 1 ≤ k ≤ n + 1 as x→ 0 and

vi,j =

(
i− 1

j − 1

)
(1− x)(i−j) =



(
i− 1

j − 1

)
(1− x), i− j = 0

−
(
i− 1

j − 1

)
, i− j = 1

0, i− j 6= 0, 1

=


1− x, i− j = 0

1− i, i− j = 1

0, i− j 6= 0, 1

→


1, i− j = 0

1− i, i− j = 1

0, i− j 6= 0, 1

for 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n as x → 0. Consequently, by virtue of the
formula (11), we have

dn D(x)

dxn
=

(−1)n

(1− x)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−x 1− x 0 . . . 0 0
−e−x −1 1− x . . . 0 0
e−x 0 −2 . . . 0 0

...
...

...
. . .

...
...

(−1)n−2e−x 0 0 . . . 1− x 0
(−1)n−1e−x 0 0 . . . −(n− 1) 1− x
(−1)ne−x 0 0 . . . 0 −n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
(−1)ne−x

(1− x)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1− x 0 . . . 0 0
−1 −1− x 1− x . . . 0 0
0 −2 −2− x . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1− x 0
0 0 0 . . . 2− n− x 1− x
0 0 0 . . . 1− n 1− n− x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

e−x

(1− x)n+1
(−1)n|hij(x)|n×n,

where n ∈ N. Combining this with Theorem 3 results in the equality constituted
by the right-hand one in (10). The proof of Corollary 1 is complete. �

4. Remarks

Remark 1. The equation (1) can be rearranged as

e−x = (1− x)

∞∑
n=0

!n
xn

n!
,

∞∑
n=0

(−1)n

n!
xn =

∞∑
n=0

!n
xn

n!
−
∞∑

n=1

!(n− 1)
xn

(n− 1)!
,

∞∑
n=0

(−1)n

n!
xn = 1 +

∞∑
n=1

[!n− n×!(n− 1)]
xn

n!
.
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Hence, we recover the relation

!n− n×!(n− 1) = (−1)n, n ∈ N.

Remark 2. The recurrence relation (5) can also be deduced from the expression (4).

Remark 3. Let M0 = 1 and

Mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1,1 m1,2 0 . . . 0 0
m2,1 m2,2 m2,3 . . . 0 0
m3,1 m3,2 m3,3 . . . 0 0

...
...

...
...

...
...

mn−2,1 mn−2,2 mn−2,3 . . . mn−2,n−1 0
mn−1,1 mn−1,2 mn−1,3 . . . mn−1,n−1 mn−1,n
mn,1 mn,2 mn,3 . . . mn,n−1 mn,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
for n ∈ N. It was obtained in [4, p. 222, Theorem] that the sequence Mn for n ≥ 0
satisfies M1 = m1,1 and

Mn = mn,nMn−1 +

n−1∑
r=1

[
(−1)n−rmn,r

n−1∏
j=r

mj,j+1Mr−1

]
, n ≥ 2. (17)

In particular, it was showed in [4, pp. 222–223, Examples 1 and 2] that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 . . . 0 0
1 2 −1 . . . 0 0
1 1 2 . . . 0 0
...

...
...

...
...

...
1 1 1 . . . −1 0
1 1 1 . . . 2 −1
1 1 1 . . . 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= F2n,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 −1 0 . . . 0 0
1 2 −1 . . . 0 0
1 1 2 . . . 0 0
...

...
...

...
...

...
1 1 1 . . . −1 0
1 1 1 . . . 2 −1
1 1 1 . . . 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= F2n+1,

and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 1 0 . . . 0 0
1 2 1 . . . 0 0
1 1 2 . . . 0 0
...

...
...

...
...

...
1 1 1 . . . 1 0
1 1 1 . . . 2 1
1 1 1 . . . 1 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= Fn+2,

where

Fn =

(
1 +
√

5
)n − (1−√5

)n
2n
√

5
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for n ∈ N denotes the Fibonacci number. For more information on the Fibonacci
numbers Fn, please refer to [4, 5, 12] and closely-related references therein.

Applying (17) to (4) yields the recurrence relation (5) once again.

Remark 4. This paper is a companion of the articles or notes [8, 11, 14, 15].
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