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Abstract: We introduce the notions of monotony, subadditivity, and homogeneity for functions
defined on a convex cone, call functions with these properties diversification functions and obtain the
respective properties for the risk aggregation given by such a function. Examples of diversification
functions are given by seminorms, which are monotone on the convex cone of non-negative vectors.
Any Lp norm has this property, and any scalar product given by a non-negative positive semidefinite
matrix as well. In particular, the Standard Formula is a diversification function, hence a risk measure
that preserves homogeneity, subadditivity, and convexity.
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1. Introduction

The Solvency II standard formula is a means to assign the so-called solvency capital requirement
to an insurance or reinsurance company. The undertaking has to have enough own funds so as to
cover its capital requirement, and the ratio of both is called solvency ratio, which thereby should be
greater or at least be equal to 1.

The solvency capital requirement is the sum of the basic solvency capital requirement – which
aggregates the market, life, non-life, health, and counterparty risk – and adjustments for operational
risk, deferred taxes, and others.

Let us denote the solvency capital requirements for the modules market, life, non-life, health,
and counterparty risk with S1, . . . , S5 respectively, and collect them to a vector S = (S1, . . . , S5)

T.
Then the basic solvency capital requirement is computed by the formula

basic solvency capital requirement =
√

ST AS, (1)

where A is some positive definite matrix of correlation parameters.
The risk modules themselves consist of sub-modules which are aggregated in the same manner.

The market risk module for example consists of the interest rate, equity, spread, property, currency,
and concentration risk sub-modules, which are aggregated by a likewise formula, yet with another
matrix A of course.

In the following, we will focus on the square-root formula (1) and identify the Solvency II
standard formula with the way in which the risk is aggregated, namely the square-root formula as
stated above.

In section 1, we present a method suggested once by Gesamtverband der Deutschen
Versicherungswirtschaft (GDV) for the reallocation of risk within the standard formula and figure out
some special case.

In section 2, the method turns out to be the Euler principle applied to the standard formula,
which works due to the fact that the standard formula is homogeneous.

Moreover, the standard formula constitutes a norm, which means that we have the triangle
inequality at hand. In section 3, we will use this and give some estimates on the sensitivities of
the reallocation method.
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In section 4, we consider the standard formula as a risk measure, and as a model for
diversification – which applies to the several risks of a given portfolio, or to the risks of sub-portfolios
of a portfolio, or to the risks of business lines within a company, or generally speaking to any
“portfolio of risks”.

So what we do not assume is that there is an additive decomposition of some portfolio (or
aggregated outcome) X in terms of sub-portfolios (or contributions) X1, . . . , XN like

X =
N

∑
k=1

Xk, (2)

as it is typically assumed in the literature [3,5,8,10]. Instead, think of different risks within one
portfolio, or company, as it is the case in the standard formula. Well, one could build up an internal
model so as to obtain a stochastic model with the additive structure (2) – but this is another story.

2. The GDV method

The Gesamtverband der Deutschen Versicherungswirtschaft (GDV) once suggested an allocation
method for re-allocation of risk in the framework of the Solvency II Standard Formula. We therefore
call it the GDV method and at first state and prove its properties without relying on geometry. In the
next section it will turn out that the GDV method is nothing else than the Euler allocation principle
applied to the standard formula.

Lemma 1 (GDV Method). Let R ∈ RN a vector of risks and A be a symmetric matrix. Let the overall risk be
given by

‖R‖A =
√

RT AR. (3)

Then the gradient of R 7→ ‖R‖A is given by

∇‖R‖A =
AR
‖R‖A

for all ‖R‖A > 0. (4)

The equation
〈∇ ‖R‖A , R〉 = ‖R‖A (5)

holds.

Remark 1. The GDV method is a means to allocate the overall risk ‖R‖A to the sub-risks Rk. It uses the
sensitivities (partial derivatives)

ωk =
∂ ‖R‖A

∂Rk
=

1
‖R‖A

N

∑
`=1

R`A`k, 1 ≤ k ≤ N, (6)

and the risk contribution of risk k to the overall risk then is ωkRk. Equation (5) shows that the risk contributions
add up to the overall risk:

‖R‖A = ω1R1 + . . . ωN RN . (7)

Remark 2. In case the concentration risk within the Solvency market risk module vanishes, its sensitivity
vanishes as well (provided the market risk is positive). This is because the correlation parameters of the
concentration risk to the other sub-risks of the market risk are all zero. Therefore the market risk in terms
of the concentration risk x has the form

f (x) = ‖R‖A =
√

c + x2, c > 0, (8)
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where
√

c denotes the market risk without concentration risk. The sensitivity of the concentration risk for x = 0
is

ω =
d f
dx

(0) =
x

f (x)

∣∣∣∣
x=0

= 0. (9)

3. The standard formula as a homogeneous function

There is a reason why equation (5) holds: A function f : Rn → R is called homogeneous of degree
α ∈ R, if

f (tx) = tα f (x) for all t > 0 and x ∈ Rn \ {0}. (10)

A theorem of Euler states that a function is homogeneous of degree α > 0 if and only if

〈∇ f (x), x〉 = α f (x) for all x ∈ Rn \ {0}, (11)

see [9]. A function which is homogeneous of degree 1 is briefly called homogeneous as well. Hence
(5) is by Euler’s theorem equivalent to the fact that the standard formula is homogeneous, and indeed
we have

‖tR‖A = t ‖R‖A for all t > 0. (12)

Capital allocation by (11) is called Euler’s principle [10] and hence the GDV method (5) amounts to
be Euler’s principle applied to the standard formula. Under the simplifying assumption that the
underlying random variables have a normal distribution, this was observed already by De Angelis
and Granito [4].

Lemma 2. The risk in direction of a risk allocation R 6= 0 is proportional to the directional derivative of the
risk in this direction, i.e.

‖y‖A = DνR ‖R‖A · |y| for all y = |y| νR, where νR =
R
|R| . (13)

Proof. By Euler’s theorem, i.e. (5), the directional derivative of the risk is

DνR ‖R‖A = 〈∇ ‖R‖A , νR〉 =
〈
∇‖R‖A ,

R
|R|

〉
=
‖R‖A
|R| = ‖νR‖A . (14)

This implies
DνR ‖R‖A · |y| = ‖|y| νR‖A = ‖y‖A . (15)

Lemma 3. Let R 6= 0 some risk allocation and c > 0. Then the sensitivities of cR and R coincide:

∇‖cR‖A = ∇‖R‖A . (16)

Proof. By homogeneity, we have for all v ∈ Rn

〈∇ ‖cR‖A , v〉 = lim
h→0

1
h

(
‖cR + hv‖A − ‖cR‖A

)
= lim

h→0

c
h

(∥∥∥∥R +
h
c

v
∥∥∥∥

A
− ‖R‖A

)
= lim

h′→0

1
h′
(∥∥R + h′v

∥∥
A − ‖R‖A

)
= 〈∇ ‖R‖A , v〉 .

This implies the assertion.

More generally, the same proof shows that the gradient of a homogeneous function of degree
α ∈ R is homogeneous of degree α− 1. (The case α = 0 is somewhat degenerate, yet true.)
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4. The standard formula as a norm

A should be positive semidefinite, because it is a correlation matrix. Therefore (3) defines a
seminorm. If A is positive definite, (3) defines a norm [6, p. 154].

Note that A may well contain tail-correlations – defined in one or the other manner – rather than
linear correlations. Nevertheless, from an economic point of view, A being positive semidefinite is no
bad choice in any case. Cf. [2,7] with respect to the interconnection between the standard formula
and tail correlations.

Note that A is indeed positive semidefinite in case it contains linear (or Pearson) correlations, as
we state in the following well-known Theorem without proof.

Theorem 1. Let S be the covariation matrix and K the correlation matrix of a random vector Z. Then S and K
are positive semidefinite. If there does not exist any linear combination of the entries of Z which is constant, S
and K are positive definite.

Once we know that ‖ · ‖A defines a seminorm, we can use the triangle inequality.

Lemma 4. Let A be positive semidefinite and the diagonal elements of A be 1 (as it is the case in the standard
formula). Then the absolute value of the sensitivities (6) is not greater than 1.

Proof. The assumption that the diagonal elements of A are 1 implies

‖ek‖A = 1 (17)

for all unit vectors ek of the standard basis (1 ≤ k ≤ N). Hence we obtain by the triangle inequality

|ωk| =
∣∣∣∣∂ ‖R‖A

∂Rk

∣∣∣∣ = ∣∣∣∣limt→0

‖R + t ek‖A − ‖R‖A
t

∣∣∣∣ ≤ lim
t→0

|t| ‖ek‖A
|t| = 1 (18)

for all 1 ≤ k ≤ N.

Theorem 2. Let the matrix A be positive semidefinite, have diagonal elements of 1, and have non-negative
entries (as it is the case in the standard formula). Let the risk vector R be non-negative, i.e. every entry of R be
non-negative. Let D be a change of the risk vector and

D ≥ 0 or −R ≤ D ≤ 0. (19)

Then the following estimate on the change of the sensitivities holds:

∣∣∇‖R + D‖A −∇‖R‖A
∣∣ ≤ ‖D‖A
‖R + D‖A

, (20)

where the absolute value | · | denotes the maximum norm.

Proof. We derive

∇‖R + D‖A −∇‖R‖A =
A(R + D)

‖R + D‖A
− AR
‖R‖A

=
AR
‖R‖A

(
‖R‖A
‖R + D‖A

− 1
)
+

AD
‖D‖A

‖D‖A
‖R + D‖A

.
(21)

At first we consider the case D ≥ 0. Then

‖R + D‖2
A − ‖R‖

2
A = DT A(R + D) + RT AD (22)
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is non-negative, because there are solely non-negative numbers entering in the products. Hence the
bracket in equation (21) is negative or zero. Therefore the two summands on the right hand side of
(21) have a different sign in every component. We obtain with Lemma 4

∣∣∇‖R + D‖A −∇‖R‖A
∣∣ ≤ max

{∣∣∣∣ ‖R‖A
‖R + D‖A

− 1
∣∣∣∣ ,

‖D‖A
‖R + D‖A

}
. (23)

Now the triangle inequality shows∣∣∣∣ ‖R‖A
‖R + D‖A

− 1
∣∣∣∣ = ‖R + D‖A − ‖R‖A

‖R + D‖A
≤ ‖D‖A
‖R + D‖A

, (24)

which implies (20).
The other case is −R ≤ D ≤ 0. In this case the entries of D in the right hand side of (22) are

non-positive, while all other entries are non-negative. Hence (22) is non-positive. This means that the
bracket in (21) is non-negative while the entries in the last term are non-positive. Hence the estimate
(23) holds in this case as well. We use the triangle inequality in the form

‖R‖A = ‖R + D− D‖A ≤ ‖R + D‖A + ‖−D‖A (25)

and obtain ∣∣∣∣ ‖R‖A
‖R + D‖A

− 1
∣∣∣∣ = ‖R‖A − ‖R + D‖A

‖R + D‖A
≤ ‖D‖A
‖R + D‖A

. (26)

This completes the proof.

Theorem 3. Let the matrix A be positive semidefinite and have diagonal elements of 1. Then the following
estimate on the change of the sensitivities holds:

∣∣∇‖R + D‖A −∇‖R‖A
∣∣ ≤ 2

‖D‖A
‖R + D‖A

, (27)

where the absolute value | · | denotes the maximum norm.

Proof. We apply the triangle inequality to (21) and use (24) and (26), respectively.

5. The standard formula as a risk measure, and as a model for diversification

A risk functional is defined on some domain X ⊆ L0 of random variables (risks) with values in
R ∪ {∞}. We assume that X is a convex cone, i.e. αX + βY ∈ X for all X, Y ∈ X and α, β > 0. A risk
functional R may have one or more of these properties1:

• R is monotone, if R(X) ≥ R(Y) whenever X ≤ Y a.s. In this case, the risk functional is called a
risk measure.

• R is subadditive, if R(X + Y) ≤ R(X) + R(Y).
• R is homogeneous, if R(tX) = tR(X) for all t > 0.
• R is cash invariant, if R(X + a) = R(X) − a for all a ∈ R. (For this to make sense we have to

assume that X contains all constants a ∈ R.)
• R is convex, if R(αX + (1− α)Y) ≤ αR(X) + (1− α)R(Y) for all α ∈ (0, 1).
• R is version independent, if R(X) = R(Y) for all X d

= Y.
• R is comonotone additive, if R(X + Y) = R(X) + R(Y) for X, Y comonotone.

Note that a homogeneous risk functional is subadditive if and only if it is convex.

1 These properties of risk functionals are taken from [8, p. 142 ff.].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2016                   doi:10.20944/preprints201610.0031.v1

http://dx.doi.org/10.20944/preprints201610.0031.v1


6 of 9

Definition 1. Let B ⊆ (R∪ {∞})n be a convex cone and f : B→ R∪ {∞} a function. Then

• f is monotone (non-decreasing), if f (r) ≤ f (s) for all r, s ∈ B with rk ≤ sk for all 1 ≤ k ≤ n.
• f is subadditive, if f (r + s) ≤ f (r) + f (s) for all r, s ∈ B.
• f is homogeneous, if f (tr) = t f (r) for all r ∈ B and t > 0.
• f is convex, if f (αr + (1− α)s) ≤ α f (r) + (1− α) f (s) for all r, s ∈ B and α ∈ (0, 1).
• f is additive, if f (r + s) = f (r) + f (s) for all r, s ∈ B.

Again, a homogeneous function is subadditive if and only if it is convex. – Due to the convention
that lower outcomes correspond to a higher risk, the signs in the notion of monotonicity of a risk
functional and a function are opposite.

Note that we do not propose a property so as to maintain cash invariance. Cash invariance might
not be a helpful concept for the study of diversification effects within a company, or portfolio.

Lemma 5. Let
Rk : X → Bk ⊆ R∪ {∞} (1 ≤ k ≤ n) (28)

be risk functionals and
B = B1 × . . .× Bn (29)

be a convex cone. Let f : B→ R∪ {∞} be a function. Then

R = f (R1, . . . , Rn) (30)

is a risk functional and the following holds:

• If R1, . . . , Rn and f are monotone, then R is monotone, i.e. a risk measure.
• If R1, . . . , Rn are subadditive, and f is monotone and subadditive, then R is subadditive.
• If R1, . . . , Rn and f are homogeneous, then R is homogeneous.
• If R1, . . . , Rn are convex, and f is monotone and convex, then R is convex (albeit not cash invariant in

general2).
• If R1, . . . , Rn are version independent, then R is version independent.
• If R1, . . . , Rn are comonotone additive, and f is additive, then R is comonotone additive.

The proof is straightforward.

Definition 2. Let B ⊆ (R∪ {∞})n be a convex cone and f : B → R ∪ {∞} a function. We call f a
diversification function, if f is monotone, homogeneous, and subadditive.

Note that there is a related notion in information theory, namely of an aggregation function f :
[0, 1]n → [0, 1], which yet aims at a slightly other direction [1].

Lemma 6. Let R be a risk functional and

S = max{R; 0}. (31)

If R is monotone, subadditive, homogeneous, convex, or version independent, then S has the respective property
as well.

This shows that one may consider non-negative risk functionals, or risk measures. The proof is
straightforward. Lemma 5 implies:

Theorem 4. Let R1, . . . , Rn : X → [0, ∞) be non-negative, finite risk measures and R = (R1, . . . , Rn)T. Let
f : Rn → R be a seminorm and the restriction of f to [0, ∞)n be monotone. Then the following holds:

2 For reasons not known to the public a risk measure is called a convex risk measure in the literature when it is convex, and
cash invariant.
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• The restriction of f to [0, ∞)n is a diversification function.
• f (R) is a risk measure.
• If R1, . . . , Rn are homogeneous, then f (R) is a homogeneous risk measure.
• If R1, . . . , Rn are subadditive, then f (R) is a subadditive risk measure.
• If R1, . . . , Rn are convex, then f (R) is a risk measure, which is convex (albeit not cash invariant in

general).

It is not unusual for a seminorm that its restriction to non-negative elements is monotone:
All Lp-norms have this property. With respect to symmetric bilinear forms we have the following
theorem:

Theorem 5. Let A ∈ Rn×n be positive semidefinite. The restriction of the seminorm ‖ · ‖A to [0, ∞)n is
monotone if and only if A is non-negative, i.e. has non-negative entries only.

Proof. Let A be non-negative. We show that the restriction of ‖ · ‖A to [0, ∞)n is monotone. Let
R, S ∈ Rn with R ≥ S ≥ 0, i.e. Rk ≥ Sk ≥ 0 for all 1 ≤ k ≤ n. Then

‖R‖2
A − ‖S‖

2
A = (R− S)T AR + ST A(R− S) ≥ 0, (32)

because all contributions in the sum are non-negative.
Now assume that ajk = akj < 0 for some 1 ≤ j, k ≤ n. Consider R = c ej + ek and S = ek, where

ej and ek are the respective unit vectors of the standard basis and 0 < c < 2|ajk|/|ajj| in case ajj 6= 0
and 1 otherwise. Then 0 ≤ S ≤ R and

‖R‖2
A − ‖S‖

2
A = c eT

j A(c ej + ek) + eT
k Ac ej = c2ajj + 2c ajk < 0, (33)

which shows that monotonicity is violated.

Therefore Theorem 4 applies to the standard formula and shows that ‖R‖A is a subadditive,
or homogeneous risk measure, whenever the individual risk measures Rk, which are assumed to be
non-negative and finite, share the respective property.

This is another hint that it could be an unskilled choice to define A by the correlation matrix of
the underlying random variables: In general one would encounter negative correlation coefficients
which would lead to a risk functional which would not enjoy to be a risk measure in general because
of the lack of monotony. Unless, for example, the underlying risks are elliptically distributed, have
mean zero, and the risk measures are value at risk of same level of confidence.

In any case, the risk measure of the standard formula is value at risk. Value at risk is a
homogeneous, cash invariant, version independent, comonotone additive risk measure, yet not
subadditive nor convex in general [8, p. 147]. Hence the standard formula with value at risk is a
homogeneous, version independent risk measure. (To be precise, value at risk has to be maximized
with zero to fit.)

We have two concluding remarks on diversification functions, and the standard formula. Due
to the fact that the standard formula is actually nested, the first one is on the composition of
diversification functions.

Lemma 7. Let B1, . . . , Bm be convex cones. Then B = B1 × . . .× Bm is a convex cone, and vice versa.

Lemma 8. Let C ⊆ (R∪ {∞})m , Bk ⊆ R ∪ {∞} be convex cones, and gk : C → Bk be diversification
functions (1 ≤ k ≤ n, m ∈ N). Let

f : B1 × . . .× Bn −→ R∪ {∞} (34)

be a diversification function. Then
f ◦ g : C −→ R∪ {∞} (35)
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is a diversification function. The sensitivity ω` (1 ≤ ` ≤ m) of f ◦ g with respect to an allocation S ∈ C is
given by

ω` =
∂( f ◦ g)

∂S`
(S) =

〈
∇ f (g(S)),

∂`g1(S)
...

∂`gn(S)

〉 . (36)

Remark 3. One often encounters the special case, in which there is only one function gk, which depends on a
coordinate S`. In this case, equation (36) means

ω` = ∂k f (g(S))∂`gk(S). (37)

Finally, Lemma 4 can be restated using monotony and subadditivity instead of the triangle
inequality.

Definition 3. Let B ⊆ (R ∪ {∞})n be a convex cone, and f : B → R ∪ {∞} a diversification function. We
call f a normalized diversification function, if ek ∈ B for all unit vectors e1, . . . , en of the standard basis in
Rn, and

f (ek) = 1 for all 1 ≤ k ≤ n. (38)

Theorem 6. The sensitivities of a differentiable, normalized diversification function are not negative and not
greater than 1, i.e.

∂ f
∂xk

(x) ∈ [0, 1] for all x ∈ B and 1 ≤ k ≤ n. (39)

Proof. We have by monotony

f (x + h ek) ≥ f (x) for all x ∈ B, h > 0 and 1 ≤ k ≤ n, (40)

and we obtain by subadditivity

f (x + h ek) ≤ f (x) + f (h ek) for all x ∈ B, h > 0 and 1 ≤ k ≤ n. (41)

So

0 ≤ lim
h↘0

f (x + h ek)− f (x)
h

=
∂ f
∂xk

(x) ≤ lim
h↘0

f (h ek)

h
= 1, (42)

as was to be shown.

This applies to the sensitivities of the standard formula as well, for the standard formula is a
normalized diversification function.

Acknowledgments: I thank Daniel Berger, Katrin Credner, Andreea Hannich and Jonas Kaiser for many
worthwhile discussions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Beliakov, G.; Calvo, T.; Pradera, A. Aggregation functions: A guide for practitioners. Springer: Heidelberg,
2007.

2. Campbell, R.; Koedijk, K.; Kofman, P. Increased Correlation in Bear Markets. Financ Anal J 2002, 58, 87-94.
3. Denault, M. Coherent allocation of risk capital. J Risk 2001, 4, 1-34.
4. De Angelis, P.; Granito, I. Capital allocation and risk appetite under Solvency II framework. arXiv:1511.

02934, 2015.
5. Kalkbrener, M. An axiomatic approach to capital allocation. Math Financ 2005, 15(3), 425-437.
6. Koecher, M. Lineare Algebra und analytische Geometrie. Springer: Berlin, Heidelberg, New York, Tokyo, 1985.
7. Mittnik, S. VaR-implied tail-correlation matrices. Econ Lett 2014, 122(1), 69-73.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2016                   doi:10.20944/preprints201610.0031.v1

http://dx.doi.org/10.20944/preprints201610.0031.v1


9 of 9

8. Rüschendorf, L. Mathematical Risk Analysis. Springer: Heidelberg, New York, Dordrecht, London, 2013.
9. Tasche, D. Risk contributions and performance measurement. Working Paper, TU München, 1999.
10. Tasche, D. Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle. In Pillar II in the

New Basel Accord: The Challenge of Economic Capital; Resti, A., Ed.; Risk Books: London, 2008; pp. 423-453.

c© 2016 by the author; licensee Preprints, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 October 2016                   doi:10.20944/preprints201610.0031.v1

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.
http://dx.doi.org/10.20944/preprints201610.0031.v1

	Introduction
	The GDV method
	The standard formula as a homogeneous function
	The standard formula as a norm
	The standard formula as a risk measure, and as a model for diversification

