Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Analytical Investigations on Carrier Phase Recovery in Dispersion-Unmanaged n-PSK Coherent Optical Communication Systems

Version 1 : Received: 22 August 2016 / Approved: 23 August 2016 / Online: 23 August 2016 (10:40:19 CEST)

How to cite: Xu, T.; Jacobsen, G.; Popov, S.; Li, J.; Liu, T.; Zhang, Y.; Bayvel, P. Analytical Investigations on Carrier Phase Recovery in Dispersion-Unmanaged n-PSK Coherent Optical Communication Systems. Preprints 2016, 2016080194. https://doi.org/10.20944/preprints201608.0194.v1 Xu, T.; Jacobsen, G.; Popov, S.; Li, J.; Liu, T.; Zhang, Y.; Bayvel, P. Analytical Investigations on Carrier Phase Recovery in Dispersion-Unmanaged n-PSK Coherent Optical Communication Systems. Preprints 2016, 2016080194. https://doi.org/10.20944/preprints201608.0194.v1

Abstract

Using coherent optical detection and digital signal processing, laser phase noise and equalization enhanced phase noise can be effectively mitigated using the feed-forward and feed-back carrier phase recovery approaches. In this paper, theoretical analyses of feed-back and feed-forward carrier phase recovery methods have been carried out in the long-haul high-speed n-level phase shift keying (n-PSK) optical fiber communication systems, involving a one-tap normalized least-mean-square (LMS) algorithm, a block-wise average algorithm, and a Viterbi-Viterbi algorithm. The analytical expressions for evaluating the estimated carrier phase and for predicting the bit-error-rate (BER) performance (such as the BER floors) have been presented and discussed in the n-PSK coherent optical transmission systems by considering both the laser phase noise and the equalization enhanced phase noise. The results indicate that the Viterbi-Viterbi carrier phase recovery algorithm outperforms the one-tap normalized LMS and the block-wise average algorithms for small phase noise variance (or effective phase noise variance), while the one-tap normalized LMS algorithm shows a better performance than the other two algorithms for large phase noise variance (or effective phase noise variance). In addition, the one-tap normalized LMS algorithm is more sensitive to the level of modulation formats.

Keywords

coherent optical detection; optical fiber communication; carrier phase recovery; feed-back and feed-forward; laser phase noise; equalization enhanced phase noise; n-level phase shift keying

Subject

Engineering, Electrical and Electronic Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.