
Article

2DCBS: A Model for Developing Dependable
Component-Based Software
Hasan Kahtan 1,2,*, Nordin Abu Bakar 3, Rosmawati Nordin3
and Mansoor Abdullateef Abdulgabber 1

1 Faculty of Computer Systems & Software Engineering, Universiti Malaysia Pahang, 26300 Gambang
Kuantan Pahang, Malaysia ; hakmansoor@ump.edu.my

2 Institute of Visual Informatics, Universiti Kebangsaan Malaysia 43600 Bangi Selangor, Malaysia
3 Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450, Shah Alam,

Selangor, Malaysia ; nordin@tmsk.uitm.edu.my; roswati@tmsk.uitm.edu.my
* Correspondence: hasankahtan@ump.edu.my; Tel.: +609-5492436

Abstract: The software industry has adopted component-based software development (CBSD) to
rapidly build and deploy large and complex software systems with significant savings at minimal
engineering effort, cost, and time. However, CBSD encounters issues on security trust, mainly with
respect to dependability attributes. A system is considered dependable when it can produce the
outputs for which it was designed with no adverse effect on its intended environment.
Dependability consists of several attributes that imply availability, confidentiality, integrity,
reliability, safety, and maintainability. Dependability attributes must be embedded in a CBSD
model to develop dependable component software. Motivated by the importance of these attributes,
this paper pursues two objectives: to design a model for developing a dependable system that
mitigates the vulnerabilities of software components, and to evaluate the proposed model. The
model proposed in this study is labelled as developing dependable component-based software
(2DCBS). To develop this model, the CBSD architectural phases and processes must be framed and
the six dependability attributes embedded according to the best practice method. The expert opinion
approach was applied to evaluate 2DCBS framing. In addition, the 2DCBS model was applied to the
development of an information communication technology (ICT) portal through an empirical study
method. Vulnerability assessment tools (VATs) were employed to verify the dependability
attributes of the developed ICT portal. Results show that the 2DCBS model can be adopted to
develop web application systems and to mitigate the vulnerabilities of the developed systems. This
study contributes to CBSD and facilitates the specification and evaluation of dependability
attributes throughout model development. Furthermore, the reliability of the dependable model can
increase confidence in the use of CBSD for industries.

Keywords: component-based software development; dependability attributes; availability;
reliability; integrity; confidentiality; safety; maintainability

1. Introduction

Component-based software development (CBSD) is an emergent technology that focuses on
system construction by integrating existing software components. CBSD shifts the development
emphasis from programming software to composing software systems by incorporating existing
software components based on assumptions that certain parts of a large software system reappear
regularly. Moreover, common parts may be written once and then reused many times rather than be
written over and over again [1]. At the same time, CBSD offers a range of benefits, from enhancing
an individual programmer’s productivity to analyzing the costs of the developed software effectively
[2-5]. The widespread and systematic reuse of software can meet the demands for accelerated
delivery, reduced software production and maintenance costs, and improved quality. Hence, the
main objective of CBSD is to lower the overall cost of software development [6,7]. In other words, the
cost of software production and maintenance must be reduced. CBSD also allows for the faster

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 2 of 30

delivery of a software product [8,9]. Therefore, the software industry has adopted CBSD to rapidly
build and deploy large and complex software systems with significant savings at minimal
engineering effort, cost, and time.

Software must meet a market window set by competitive organizations. High-quality software
that meets the requirements of the process to be served with minimal failure and maximum security
[10-14]. Nonetheless, several studies have reported different challenges in implementing CBSD.
According to Moradian and Håkansson [15], the interdependencies among software components
induce problems during the integration phase of software development. Therefore, the dependability
attributes of software components must be considered and evaluated in the early stages of the CBSD
cycle. In addition, pervasive computing raises major concerns regarding the capability of current
development models to develop dependable systems [16]. CBSD is an approach to software
engineering [16]; however, its capability to develop dependable software applications remains
unknown.

Moreover, a component may be unable to fulfill the application requirements because
components and applications follow different requirements and cycles [17]. First, changes (e.g.,
modifying a few components or updating new versions) in the application level may induce system
failure [18]. Second, reusing defective components may undermine trust in the entire software
system. Therefore, critical systems such as the military system must adopt an exceptional software
development process in place of the conventional approach [19]. The main objective of this process is
to ensure the accuracy of system functionality and design to validate the consistency of system
implementation with the set requirements.

In conclusion, CBSD still lacks essential formal foundations for the specification, composition,
and verification of nonfunctional requirements despite the wide adoption of this development in the
software industry and the significant number of academic studies conducted on this topic. As a result,
current CBSD practices do not provide the essential requirements for developing dependable
systems. To develop a dependable and secure system, dependability attributes must be embedded in
the CBSD process. A system is considered dependable when it can produce the outputs for which it
was designed with no adverse effect on the intended environment. Dependability comprises several
attributes, namely, availability, confidentiality, integrity, reliability, safety, and maintainability.

Nonetheless, the task of embedding dependability attributes into the software component
development process is less challenging than the task of evaluating the dependability of these
attributes [20] because the requirements of dependability attributes must be specified during the
early stages of software component development, along with the complex nature of the operational
environment itself. A well-established scale that can measure the dependability of a software
component remains difficult to establish in the research community [21]. Dependability attributes
such as reliability, safety, and integrity are traditionally treated as afterthoughts against which
protection mechanisms are employed following software component development [22,23]. Hence,
component-based software must be evaluated based on dependability attributes because this
assessment is critical in determining the dependability of a system.

The current study designs a model for developing dependable, component-based software
that mitigates the vulnerabilities of web application systems. The model proposed in this paper is
known as developing dependable component-based software (2DCBS). To develop this model, the
CBSD architectural phases and processes must be framed and the six dependability attributes
embedded. The developed 2DCBS model is then applied to the development of web application
systems. This study also evaluates the developed 2DCBS model on the basis of dependability
attributes.

The remainder of this paper is organized as follows: Section 2 reviews related studies on
component-based models. Section 3 explains the motivation for this study. Section 4 describes the
methodology. Section 5 elaborates on the model design process. Section 6 presents the 2DCBS model.
Section 7 highlights the empirical study conducted on the proposed model. Section 8 discusses the
evaluation of this model. Section 9 presents an overall discussion. Finally, Section 10 provides the
conclusion.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 3 of 30

2. Related Work

This section reviews relevant literature on the basis of two aspects: CBSD approach and CBSD
models.

2.1 CBSD Approach

The CBSD approach emerged in the late 1990s, when reusable components were incorporated
into development processes. The component base is the basic element of the current software system
[24], and CBSD is a technique that uses existing software codes [25]. With this technique, software
applications need not be developed from scratch. This technique also facilitates the assembly of
software applications using reusable software codes, thereby improving time and budget constraints
on software development. CBSD is widely used by middleware platforms and tools and has become
the mainstream for current software development. CBSD design for distributed networks (including
the Internet) has promoted e-commerce and may expand business markets considerably.
Furthermore, CBSD utilizes software components that are easier to produce and more pervasive than
ever before. Table 1 presents sample CBSD technologies and standards.

Table 1: CBSD Technologies and Models

CBSD
Technologies
and Models

Description

AUTOSAR [26] This model utilizes standardized architecture to provide a method, by
which to improve flexibility, scalability and quality of vehicular embedded
systems as well as to improve the management of such complicated
systems.

BIP [27] This model utilizes a framework that incorporates heterogeneous real-time
components (untimed or timed and synchronous or asynchronous).

COM [28] This platform supports the communications between components.
Developers employ COM to address specific areas that include controls,
compound documents, data transfer, automation and storage.

SaveCCM [29] This model is used in embedded control applications found in vehicular
systems. Such applications include safety-critical subsystems (i.e., steering,
brakes and power-train), which are responsible for controlling vehicle
dynamics.

ProCom [30] This model is designed to include the entire development process in the
vehicular automation and telecommunication domains. It is utilized for
distributed embedded systems that are control-intensive.

Koala [31] This model has a specialized architectural description language and
component that particularly target embedded software such as consumer
electronics. By using and reusing software components within a specified
type of software architecture, Koala is able to manage the complicated
embedded software at an increased production speed.

EJB [32] This model is a server-side component that covers the business logic of an
application, including interoperability, concurrency, security, persistence
and transactions.

CORBA [33] This component model is utilized as middleware to minimize the effort
required to initiate CORBA application development and deployment.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 4 of 30

Unlike traditional software development approaches, CBSD offers a range of benefits and
manages complex systems [34,35]. Software systems consist of a series of components into which
software functions and nonfunctional properties are implemented separately. CBSD promotes the
employment of effective specialists who can develop reusable components within the scope of their
expertise instead of application specialists who perform the same type of work on different projects
[36,37]. The approach also reduces the time and effort needed to develop software [38,39]. Moreover,
CBSD facilitates the development of components that are independent of specific applications
and improves the reusability of components [34,40]. Software system developers can thus maximize
existing structures and components, thereby improving the efficiency of software development
[41,42]. CBSD also generates a repository of components that supports software system development
by providing reusable and tested components.

CBSD likewise increases the productivity of programmers [5,11]. Constantly rewriting codes is
an inefficient process because programmers can write and document only limited lines of code per
day. With CBSD, programmers can utilize the interactive development environment (IDE) to
assemble components in the desired program. Therefore, many lines of code can be written each day
and productivity is enhanced [10,43]. Owing to the significant number of economic benefits gained,
CBSD is an ideal approach to building software systems. Table 2 presents the application of CBSD in
different domains.

Table 2: CBSD Applied to Different Domains

Domains Description
Cloud Computing
[44]

This domain is an adaptable component-based middleware introduced by
the authors. Cloud computing offers an extensive solution to executing
non-trivial communication applications in multi-domain platforms. It also
allows the transition of non-trivial applications in traditional grids to
hybrid grid-cloud platforms.

Embedded
Systems Software
at Run-Time [45]

CBSD is used as an architecture-base. Here, CBSD was used to effectively
master deal system heterogeneity and software complexity as well as to
manage evolution planning and execution.

Embedded System
in Train Control
Management
System [46]

CBSD is utilized to improve a train control management system (TCMS)
supplier organization through the real-time identification of reusable
software from existing systems.

Safety-Critical
System in the
Automotive [47]

CBSD is used to elaborate on the effects of functional safety-critical
systems (e.g., electronic systems in the automotive domain) as well as to
develop product variants that are critical to ensuring safety.

Safety-Critical
System and
Dynamic
Adaptation [48]

CBSD modeling is used to overcome the adaptation complexity of system
design, which is brought about by numerous possible system
configurations of a composition of reconfigurable components. This
approach reduces the system design complexity at each hierarchical level
by grouping the component compositions into a hierarchical component.

E-Business,
Knowledge
Management and
E-Commerce [49]

The CBSD e-business model is applied together with knowledge
management for application to the deterministic and semi-dynamic e-
commerce environment. CBSD is utilized in the application of e-business
through the subdomain of knowledge management.

Enterprise
Distributed Real-
Time and

The advantages of using component-based middleware are maximized in
order to meet the quality-of-service (QoS) requirements of distributed real-
time and embedded (DRE) systems as well as to support their

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 5 of 30

Embedded
Systems [50]

implementation. Using component technologies, scalable and efficient
standard-based deployment for component-based enterprise DRE
systems can be achieved.

Medical Training
Systems [51]

A 3D visual CBSD is applied in medical training systems to support haptic
devices, such as phantoms. Developing medical training systems is easier
and more efficient using the CBSD approach.

Hospital
Pharmacy [52]

The CBSD approach is adopted in the health care domain. Hospital
pharmacists found success in using this approach to model generic
activities.

2.2 CBSD Models

Several authors have reviewed the current state of CBSD models. IrshadKhan, et al. [53], stated
that different CBSD models have been developed for the industry and for the academe. In this study,
the authors discussed and described development activities in five specific papers. Ahmed, et al. [25]
compared the main drawbacks of selected models in terms of the CBSD process, whereas Pandeya
and Tripathi [54] compared their proposed process model with several CBSD models with respect to
development features. Chhillar and Kajla [55] and Kaur and Singh [56] studied and compared the
most common models of CBSD, which emphasize reuse-based and feedback processes in each phase
of software development. To support the development phase of the model proposed in the study,
Sharp and Ryan [57] cited selected previous studies in the CBSD field. In addition, Aris and Salim
[10] compared the development stages of seven existing CBSD models. Olsen and Loe [58] also
investigated and described the advantages and disadvantages of six existing CBSD models.

The general concepts and integration efforts associated with the existing models have been
described sufficiently by previous studies. However, these studies considered only a limited
number of the models derived from literature. For instance, most authors manually selected
the papers for review and narrowed the scope to less than eight models. In fact, the majority
of the selected models was not discussed comprehensively. Furthermore, these studies also
disregarded the issue pertaining to details regarding the phases and stages of the development
process.

A robust systematic literature review (SLR) was presented in our previous work for identifying
all relevant research in [59]. Table 3 shows a comparison of existing models with respect to the SLR-
based development process. We introduce 26 studies on existing CBSD models and compare them in
terms of three main CBSD development phases, namely, the system requirement and qualification,
component development, and system development. These phases are subdivided into 31
development stages. Models that support the indicated development stage are checked (√). Process
models that do not support the indicated development stage are not checked.

Many CBSD models have been proposed, as shown in Table 3. However, such models do not
address the security domain because the security features of existing CBSD models are commonly
considered post-development.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 6 of 30

Table 3: Gap Analysis in the Existing CBSD Models
Ph

as
es

 CBSD Models

 Development Stages

 B
ro

w
n

et
 a

l.
[6

0]

 A
oy

am
a

[6
1]

 T
ra

n
[6

2]

 L
ee

, e
t a

l.
[6

3]

 Y
au

 a
nd

 D
on

g
[6

4]

 C
he

es
m

an
, e

t a
l.

[6
5]

 P
au

l [
66

]

 C
rn

ko
vi
ć

[6
7]

 H
ut

ch
in

so
n,

 e
t a

l.[
68

]

 C
ap

re
tz

 [6
9]

 M
ei

 [7
0]

 C
ap

re
tz

 [7
1]

 C
rn

ko
vi

c,
 et

 a
l.

[7
2]

 A
ri

s
an

d
Sa

lim
 [1

0]

 Q
ur

es
hi

 e
t a

l.
[7

3]

 K
ou

ro
sh

fa
r,

et
 a

l.
[7

4]

 S
ha

rp
 a

nd
 R

ya
n

[5
7]

 G
ill

 a
nd

 T
om

ar
 [1

]

 B
os

e
[7

5]

 C
hh

ill
ar

 e
t a

l.
[5

5]

 L
au

, e
t a

l.
[7

6]

 P
an

de
ya

 e
t a

l.
[5

4]

 S
ha

ng
 e

t a
l.

[5
]

 S
om

m
er

vi
lle

 [1
6]

 A
hm

ed
 e

t a
l.

[2
5]

 I
rs

ha
dK

ha
n

et
 a

l.
[5

3]

Sy
st

em
 R

eq
ui

re
m

en
t

 &
 Q

ua
lif

ic
at

io
n

Domain engineering √ √ √ √ √ √ √
Domain analysis and specifications √
Defining component qualifications required √ √ √ √ √ √ √ √ √ √
Obtaining qualified components from(repository / 3rd party vendor) √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Security consideration (requirement analysis & component selection)
Determining qualified component development processes √ √ √ √ √ √ √ √

C
om

po
ne

nt
 D

ev
el

op
m

en
t

Fo
r r

eu
se

 (f
ro

m
 s

cr
at

ch
)

Component requirements analysis √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Component design √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Design, architecture, implementing and testing based on security
features

Component implementation √ √ √ √ √ √ √ √ √ √ √
Component testing √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Component maintenance √ √ √ √ √ √ √ √ √
Component coding, wrapping and archiving √ √ √ √ √ √ √ √ √ √

Po
st

-M
od

ifi
ca

tio
n Domain analysis and specifications √ √ √

Neglecting the incompatible components √ √ √ √ √ √ √ √ √ √
Evaluate & adaptability components according to architectural style √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Component coding, wrapping and archiving √ √ √ √ √ √ √ √ √ √
Implementing and testing component-based on security features
Component testing √ √ √ √ √ √ √ √ √

W
ith

ou
t M

od
ifi

ca
tio

n

Domain analysis and specifications √ √ √ √
Obtaining qualified components compatible with system analysis,
specification and design

√ √ √ √ √ √ √

√

Modifying application design to be suitable with existing
components √

 √ √

Implementing and testing component-based on security features
Component testing √ √ √ √ √ √ √

Sy
st

em

D
ev

el
op

m
en

t

Assemble √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Testing components configured √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Testing the system after integrated all the components √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Implementation and deployment √ √ √ √ √ √ √ √ √ √ √ √
System maintenance √ √ √ √ √ √ √ √ √
Testing system based on security features
Updating components after (system deployment / user feedback) √ √ √ √ √ √ √ √ √ √ √

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 7 of 30

Likewise, security issues are either neglected, included as an afterthought, or minimized because
of the cost or efficiency conditions in the software development life cycle. The comparative analysis
performed in [59] serves as the basis for the development of 2DCBS model in the current study.
Furthermore, we thoroughly analyze existing research in [77] to investigate related software security
attributes. Six dependability attributes are identified to address the lack of security issues in CBSD,
namely, availability, reliability, confidentiality, integrity, safety and maintainability. When these
dependability attributes are considered, the CBSD product is cured of security threats, abnormal
behavior, and untrustworthy issues. Moreover, embedding dependability attributes can help CBSD
developers unburden end users of security problems.

3. Motivation

The design of the 2DCBS model is motivated by our previous works: the analysis of CBSD gap
in [59], the awareness survey conducted in [78], and the vulnerability assessment of selected web
applications in [79].

The CBSD gap was analyzed presented in [59], in which we reviewed and summarized existing
evidence concerning the challenges involved in applying CBSD, as well as the existing CBSD models
in combination with their strengths and weaknesses. We thoroughly reviewed the literature based
on an SLR. Several CBSD models have been proposed in literature as per this analysis. However,
these models neglect the security features in the CBSD process.

We also presented the results of a survey of experts from the industry and from the academic
community to determine the awareness of embedding security features into the CBSD process
in [78]. CBSD was important in software production. However, numerous organizations did not fully
consider the formal CBSD process for developing software systems. Moreover, the survey results
indicated that security features were neglected during the life cycle process of industries. Therefore,
a secure component must be developed for the CBSD process. Indeed, incorporating security
activities into the software development life cycle is crucial to minimizing the number of security
flaws and, consequently, reducing cost.

In Hasan Kahtan, et al. [79], we pre-assessed the vulnerability of selected web applications to
motivate 2DCBS model development. This vulnerability assessment was conducted to investigate the
effect of software development without considering dependability attributes. The vulnerability
assessment results indicated that existing web application systems are highly vulnerable. Moreover,
the vulnerabilities target the dependability attributes. Hence, disregarding dependability attributes
can cause system functionality failure, suspension, or denial of service that result in poor system
performance or system crash. Thus, dependability attributes must be verified and validated
throughout the software development process to guarantee the dependability of web applications.

4. Methodology

The methodology of 2DCBS development is divided into three phases, namely, phase 1:
identification of the problem and gap analysis, phase 2: model development, and phase 3: model
evaluation. The flowchart of the development methodology, which is composed of associated
activities and deliverables, is presented in Figure 1.

Phase 1 presents the preliminary study that investigates three main domains: CBSD,
software security attributes, and evaluation methods. This investigation identified current
CBSD issues, essential CBSD elements, CBSD phases and stages, common security features,
dependability attributes, vulnerability lists, evaluation methods, and vulnerability assessments
tools. Furthermore, the gap in CBSD models pertaining to security features was analyzed in
current literature.

Information on the CBSD approach, software security attributes, and evaluation methods
is gathered by obtaining related materials from books, theses, journals, and articles published
in proceedings or in technical reports. To identify all relevant research papers, the literature
is thoroughly searched using the SLR method. The information obtained facilitates a comprehensive

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 8 of 30

understanding of the concepts and models pertaining to the CBSD approach, software
security attributes, and evaluation methods.

Figure 1: 2DCSB Development Methodology

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 9 of 30

To investigate the CBSD domain further, the existing CBSD models and issues are studied.
The short-listed literature is then reviewed comprehensively to obtain the required information.
The aims of the research are to understand the terminologies used in the CBSD realm, as well
as the relationships of these terms with one another; to resolve confusion arising from the
differences in terminologies; and to gain intensive knowledge of current CBSD development.
Furthermore, the existing CBSD process models are studied comparatively to identify the
features of each model. Each model is analyzed to determine its strengths and weaknesses.
In addition, the gap in the existing CBSD models is analyzed. Strengths are retained and
weaknesses are removed to derive the features to be incorporated into the 2DCBS process
model. The results of the analysis are presented in our previous work [59].

In the software security domain, existing studies are analyzed thoroughly to investigate the
related software security attributes that must be incorporated into the CBSD process to overcome
security issues. Several attributes were used interchangeably to describe the properties
of software security. The analysis findings show that dependability attributes are the solutions
to security threats, abnormal behavior, and untrustworthy issues in a software system. Hence,
the dependability attributes that can overcome the lack of security in CBSD are identified
as follows: availability, reliability, confidentiality, integrity, safety, and maintainability. When these
dependability attributes are considered, the CBSD product is protected against security
vulnerabilities and threats. Moreover, embedding dependability attributes helps CBSD developers
relieve end users of the burden of security problems. The results of the analyses are
detailed in our previous work [77].

In the evaluation method domain, vulnerability assessment tools (VATs) are identified and
utilized in the evaluation process to measure the dependability attributes. VATs systematically
evaluate the networks used to recognize defiance of security and determine appropriate security
measures. Such tools come in the form of security scanners that protect network security. The
objective of VATs is to deliver efficient, thorough, and automated identification for detecting
known vulnerabilities in the configuration of a specific operating system.

Phase 2 presents the development of the 2DCBS model. This phase aims to establish a model
that can mitigate vulnerabilities in software components. A survey is conducted on awareness
regarding the embedding of security features in the CBSD process on the basis of gap analysis and
identification by VATs in phase 1. Vulnerability assessments are performed on 210 selected web
application systems (WASs) to determine the record of WAS vulnerabilities. The main processes in
the survey on awareness are survey design, survey submission, and survey analysis. Three processes
are involved in the investigation of VATs in relation to the 210 selected WASs, namely, the selection
of the WASs and the assessment and analysis of the results. These processes are presented in Figure
1. The outcomes of the awareness survey and VATs, as well as those of the gap analysis, motivate the
design of the 2DCBS model in this study. In the 2DCBS design process, the following five sub-
activities are considered: 1) comparison, 2) classification, 3) categorization, 4) CBSD elements, and 5)
allocation. The activities are discussed in further detail in subsection 5.1 of this paper.

The final step in phase 2 is the development of 2DCBS model, which is facilitated based on: 1)
the framing of the 2DCBS architectural phases and processes and 2) the embedding of dependability
attributes in the CBSD process stages. The model design process is detailed further in section 5 of this
paper.

Phase 3 discusses the evaluation of the 2DCBS model. The framing of 2DCBS is assessed on the
basis of the interviews and the survey conducted with industrial experts. As shown in Figure 1, three
activities are considered in the framing evaluations, namely, survey design, survey submission, and
the analysis of survey result. The survey methodology, details, and the criteria used to select the
expert participants are provided in our previous work [78]. A similar survey is conducted with
industrial experts to determine awareness regarding the embedding of security features in the CBSD
process. A similar method is adopted for the survey that evaluates the framing of the 2DCBS model.
Twenty-five industrial experts served as the respondents. These participants are experts from in-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 10 of 30

house software development company. The details and results of the survey are highlighted in
subsection 8.1 of this paper.

An empirical study is conducted using a real-system test bed in consideration of industrial
practicality to evaluate the model. This study applies the 2DCBS model to the development
of an ICT portal. The empirical study is discussed in further detail in section 7 of this paper.
Three activities are considered in model evaluation to verify the dependability attributes of the
developed system; these activities are VAT configuration, VAT application, and the analysis
of the VAT results. In Hasan Kahtan et al. [79], we also assessed vulnerability in a similar manner.
The vulnerabilities in the developed WASs are evaluated in a similar manner. The assessments aim
to identify the dependability attributes of the developed WASs and to verify the capability of the
2DCBS model to mitigate the vulnerabilities in the developed WASs. The results of these evaluations
are presented in subsection 8.2 of this paper. In addition, the semi-Markov process (SMP) is
considered as well in the evaluation of the dependable behavior of the developed ICT portal.

5. Model Design Process

The first step in deriving the 2DCBS model is to determine the elements and processes involved.
As indicated in Figure 1, the process of deriving the 2DCBS model includes three main
activities: 1) model design; 2) framing of the 2DCBS architectural phases and processes; and
3) implementation of guidelines for embedding dependability attributes in the CBSD process
stages using best practice method. The following five sub-activities are considered in the model
design process:

1. Comparison: Existing CBSD process models are compared by identifying the elements

and processes of each model and by investigating their application processes.
Each model is analyzed further to determine its strengths and weaknesses. These
strengths and weaknesses serve as the foundation for framing the 2DCBS architectural
phases and processes. Strengths are retained, and weaknesses are resolved.
This study is summarized in a table for clarity. In this stage, the elements and the
processes to be incorporated into the proposed 2DCBS process model are derived.

2. Classification: The processes of existing models are classified by the
compartmentalization method for the CBSD phases. Three fundamental CBSD phases
were considered in this procedure, namely, system requirement and qualification,
component development, and system development.

3. Categorization: These processes are categorized further according to their descriptions.
Despite being labelled differently, some processes describe the same activities.
Therefore, these differences and similarities must be resolved before processes
can be identified. Processes with similar sets of activities are noted, and the names
of different processes are replaced with a label that reflects the set of activities.

4. CBSD Elements: The following elements are defined based on the analyses conducted
in the second and third sub-activities:

• Stages that comprise the CBSD processes and reusability features;
• Compartmentalization method of the architectural phases; and
• The method of iterative and incremental integration.

The architectural phases and processes of the proposed model are thus framed.

5. Allocation: As per the finalized framing of the architectural phases and processes,

the dependability attributes are embedded in the proposed model process in the
following steps:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 11 of 30

• Emphasis on dependability attributes in requirement analysis and component
selection;

• Design, architecture, implementation, and testing based on dependability
attributes;

• Component implementation and testing based on dependability attributes; and
• System testing based on dependability attributes.

The aforementioned sub-activities comprise the process of embedding the dependability

attributes in the CBSD process. Hence, two main elements are combined to design the 2DCBS
model: the framing of the CBSD architectural phases and processes and the embedding of the
dependability attributes.

5.1 Framing of the Architectural Phases and Processes

The 2DCBS architectural phases and processes for framing are mainly drawn from existing
CBSD process models; strengths are retained, whereas weaknesses are improved. The first
step taken in framing the 2DCBS model is to identify the architectural phases and processes
should be included in the model. Figure 2 presents the framing of these phases and processes.
Processes in the existing models are grouped into architectural phase compartmentalization,
iterative and incremental integration, and reusability preservation, as described in the legend
box in Figure 2.

5.1.1 Architectural Phase Compartmentalization

All traditional software life cycle models are sequential. Thus, each phase must be completed
before the next begins. To apply CBSD successfully, the architectural phases must be
compartmentalized in the model to solve the sequential structure issue. Compartmentalization
facilitates the parallel performance of several activities without requiring the stringent completion of
all the requirements of one activity before another activity can be initiated. Thus, architectural phase
compartmentalization helps developers reduce development time and resources. This process is
divided into three phases: system requirement and qualification, component development, and
system development phases.

1. System Requirement and Qualification Phase: A set of software components that can be

applied to existing and future software system domains is identified, constructed, cataloged,
and disseminated. To identify common areas and methods of describing the system by
applying requirement standards, system requirements and qualifications are considered in
the analysis of the system domain. Therefore, this phase should be initiated at the start of
software specification if system reusability is considered. This phase enables software
engineers to share and reuse software components while working on new and existing
systems.

2. Component Development Phase: This phase is further compartmentalized into three
subphases. Once the system requirements and qualifications are established, the component
development team decides on the required component to be used (e.g., components that
already exist in the organization’s repository or components that can be bought) and the
components that must be developed from scratch for possible reuse. These subphases are
subject to mini life cycles. Therefore, three teams work in parallel on the associated
subphases.

2.1 Development for Reuse: The development process of a new component commences with

the definition of the component interface. This definition represents a fixed mechanism
among components. Components can be designed and implemented when the
interface is developed and the objectives of the methods are set

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 12 of 30

2.2 Development without Modification: To redeploy previous software development projects,
a component can be reused or migrated into a specialized subclass of an existing
component that was created by a programmer.

2.3 Post-Modification Development: Building a new module from scratch is always avoided
in component-based development. Existing components may require either minor or
major modifications to adapt to other components. For example, the component
interface may not conform to requirements or some methods may require
modifications. Such modifications can be achieved by adaptation, which involves
appending the component with a thin layer of code that implements the required
changes.

3. System Development Phase: In this phase, the components developed by the component
development team are integrated into an architectural style and interconnected with
an appropriate infrastructure to facilitate the effective coordination and management of the
component.

Figure 2: Framing of 2DCBS Architectural Phases and Processes

5.1.2 Iterative and Incremental Integration

Software component development often experiences uncertainties with respect to requirements
and implementation approaches. The inclusion of different parties before these uncertainties are
resolved complicates the development process further. In these situations, parties receive unclear
specifications at the start of the development process. Thus, collaboration between parties is required
throughout the course of the project. Glitches occur because practices and processes require long
distance collaboration. The use of iterative and incremental development (IID) as a process model is
necessary in software development that is fraught with uncertainties and unpredictable changes. IID
is a system developed through iterations and the incremental addition of new features. This system
is suitable for distributed development and reduces distribution problems through its rapid reaction
to changes.

5.1.3 Reusability Preservation

A problem that discourages component reuse is the lack of specifications that allow
programmers to anticipate component reuse in the development process. This problem can be

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 13 of 30

overcome by providing a specific location in the model that forces developers to consider the
reusability feature of a component in the development process. The following features of the 2DCBS
model preserve reusability:

1. Determination of qualified component development processes: The component development

phase begins once the system requirement and qualification phase is complete. The
team (development without modification) executes the task if the component is either
available in-house or is acquired from a third party and can be applied. If the chosen
component requires modification, the task is assigned to another team (post-modification
development). If no component is available, the other team (development for reuse) executes
this task.

2. Modification of application design for suitability with existing components: In certain
situations, modifying the application design is necessary to suit the available components.
The intent of such modification is to reduce the cost of developing components from scratch.
Modification includes the customization of application design based on the components
acquired when tailoring or modifying the components is costly or time consuming.

3. Reusable Library (Repository): To apply CBSD successfully, the deposition of components into
the component repository must be demonstrated explicitly. To improve component based
software productivity, reusable components should be selected. The repository stores
and manages reusable components. The main benefits of working on reusable components
with a repository include classification, searching, modification, testing, implementation,
version control, change control, and current and consistent documentation.

4. Closed Loop: In the closed-loop model, components from the previous development
cycle are explicitly fed back to the model to populate the repository. CBSD emphasizes the
reuse of components from previous development life cycles.

5. Traceability: Each stage in each phase should be demonstrated in a clear and sequential
process to help developers. Moreover, each process should include detailed explanations
and adequate examples to guide developers in applying this model. Unimportant processes
are omitted to avoid confusion.

5.2 Guideline for Embedding Dependability Attributes

On the basis of our previous work in [77], we conclude that dependability attributes should be
considered to overcome the security problems caused by poor software development in current
WASs. Dependability attributes must be embedded in the CBSD process to address the drawbacks of
current CBSD practices. Furthermore, the vulnerabilities associated with dependability attributes
should be identified to construct dependable software components. Thus, we introduce a guideline
for embedding dependability attributes in the CBSD process using the best practice method [80]. This
method trains employees to ensure that they fully understand their responsibilities in implementing
security rules. The guideline is designed with the assistance of expert software developers and
security consultants from a local company in Malaysia. This guideline consists of a set of best
practices designed to embed dependability attributes in the CBSD process. The objective of the
guideline is to demonstrate the embedding of such attributes in the four phases of the CBSD process,
namely, requirements, design, implementation, and testing. Figure 3 presents the dependability
attributes embedded in the CBSD process. The guideline is detailed in [80].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 14 of 30

Figure 3: Embedding Dependability Attributes in CBSD Process

6. 2DCBS Model

As a result of the findings of model design process, the 2DCBS model is proposed as shown in
Figure 4. The proposed model is divided into three phases: system requirement and qualification,
component development, and system development.

Figure 4: 2DCBS Model

In the system requirement and qualification phase, the system domain is analyzed by identifying

common areas and methods to describe the system. Six stages are outlined, and the analysis of the
dependability attributes in requirement and component selection is highlighted as an essential stage
of this phase. The component development phase is also compartmentalized into three subphases,
namely, the development for reuse, post-modification development, and development without

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 15 of 30

modification phases. Each of these three subphases consists of several stages. Design, architecture,
implementation, and testing based on dependability attributes are integrated into these three
subphases. Several stages are outlined in the system development phase. In this phase, the
components developed by the component development team are integrated into an architectural
style and interconnected with an appropriate infrastructure that facilitates the effective coordination
and management of the component. The testing system based on the dependability attributes is
incorporated.

The arrows in Figure 4 indicate that the three main phases are simultaneously connected
to one another and to the model repository, where IID and reusability preservation are incorporated.
In reusability preservation, components are deposited into the component repository.

7. Empirical Study

Empirical study is suited for many types of software engineering research because the objects
of study are contemporary phenomena. These phenomena are difficult to study in isolation
[81]. Theoretical and conceptual studies differ from analytical and controlled
empirical studies and have therefore been criticized by researchers as being less valuable, being
impossible to generalize, and being biased, among other reasons. These criticisms can be
avoided by adopting proper research methodology practices and by realizing that knowledge
should not be limited to statistical significance [81].

The rigorous implementation of a CBSD model requires application despite the actual
demands of real software applications. Ideally, a CBSD model is applied to numerous systems;
however, this ideal situation is not feasible. To address these problems, a CBSD model should
be applied in an empirical study [81,82]. This study aims to construct an industrially feasible software
application system using the CBSD approach. The model implementation process highlights
industrial practicality to ensure that the dependability attributes of the software components are
applied in an experimental context. Thus, developing a WAS using the CBSD approach is possible.
The question is whether or not a model can significantly contribute to the resolution of the lack of
security trust in a WAS using the CBSD approach.

Therefore, an empirical study is conducted on the 2DCBS model according to industrial
practicality. This empirical study applies the 2DCBS model to develop an ICT portal. The
ICT portal development that follows the 2DCBS model can ensure the proper integration of
the dependability attributes and generalization of the results.

We collaborated with a local company in Malaysia for ICT portal development. Owing to the
competition among software development companies, the company name is kept confidential for
commercial reasons. We refer to the company as Software Development Company (SDC). The ICT
portal was developed by a software development team that consists of six members currently
working at SDC. SDC is a leader in ICT innovations in Malaysia and has facilitated new market
creation for partners through patentable technologies for economic growth. With over 25 years of
experience, SDC contributes its core technological competencies to the industry to raise Malaysia’s
local, regional, and international market competitiveness. The developed online portal provides
various applications and related information to help users improve their lives in social community.
Moreover, the online portal is also equipped with intelligent service delivery platform (ISDP)
application to provide the community with access to useful information on science, technology, and
innovation. The empirical study is detailed in our previous work in [83].

8. Evaluation

Evaluating the acceptability, usability, and reliability of a software development model requires
the model to be applied and tested in an actual software development environment and thus
demands much time and budget. Several CBSD models have been introduced in the literature;
however, most of these models have not been evaluated because of limitations in time and budget.
Moreover, the development of a well-established scale that can measure the dependability of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 16 of 30

software components remains a great challenge for the research community. Despite such challenges,
the 2DCBS model is evaluated in this paper to verify whether or not the 2DCBS model can mitigate
the vulnerabilities in the developed system. Two elements of the 2DCBS model are evaluated as
follows:

1. The framing of 2DCBS architecture is evaluated by conducting an expert evaluation.
2. The dependability attributes embedded in the 2DCBS process are evaluated by verifying the

dependability attributes of the developed ICT portal.

8.1 Expert Evaluation

The results obtained are based on the supplemental documents and explanations given by
experts on the 2DCBS model during an interview. Figures 5 to 14 show the survey results of
the 2DCBS framing evaluation. As per Figure 5, 44% of the experts strongly agreed and 50% agreed
that the processes included in the 2DCBS model are essential to CBSD. This result provides a total of
94% validation for the model framing. Only 6% of the experts rated the 2DCBS framing as fair.
Experts agreed that the processes included in the 2DCBS model are essential to CBSD for several
reasons. First, the architectural phases of the 2DCBS model have been compartmentalized to solve
the sequential structure issue. Second, including IID as a process in the 2DCBS model is necessary to
ensure collaboration between parties during the project. Third, the 2DCBS model provides a specific
location that forces developers to consider the reusability feature in the development process.

Figure 5: The 2DCBS Process are All Essential for CBSD Model

According to Figure 6, 42% of the experts strongly agreed with the statement that 2DCBS solves
the sequential structure issue, 54% agreed with this statement, and 4% rated the statement as fair.
Experts agreed that the 2DCBS solves the sequential structure issue because compartmentalization
allows several activities to be performed in parallel without having to stringently complete the
requirements of one activity before starting another activity. Figure 7 verifies that the 2DCBS model
is easy to understand and simple to apply as proven that when 73% of the experts strongly agreed
and 27% agreed with the statement. Experts agreed that the 2DCBS is easily understood and applied
because of the provided traceability. Each stage in each phase is demonstrated in a clear and
sequential process. Moreover, each process includes detailed explanations to guide developers in
applying this model.

0% 0%

6%

50%

44%

Absolutely disagree

Disagree

Fair

Agree

Strongly agree

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 17 of 30

Figure 6: 2DCBS Solves the Sequential Structure Issue Figure 7: 2DCBS is Easy and Simple to be Applied

Figure 8: 2DCBS Consider A Place for the Reusable

Components

Figure 9: 2DCBS Improves the Component Development

Phase

Moreover, 42% of the experts strongly agreed and 54% agreed with the statement that the 2DCBS
considers the use of reusable components. Only 4% of the experts rated the statement as fair. This
finding is reflected in Figure 8. Experts agreed that reusable components are considered in the 2DCBS
because the deposition process of components into the component repository is essential to improve
component based software productivity.

Figure 9 shows how the 2DCBS model improves the component development phase by three
compartmentalized subphases to help developers reduce development time and resources in
software production. Based on the result, 73% of the experts strongly agreed that the 2DCBS model
has improved the component development phase, and 27% agreed. Figure 10 illustrate the benefits
of architectural phase compartmentalization. Out of 26 experts, 25 experts highly agreed
(combination of the experts who strongly agreed and agreed) with the benefits of architectural phase
compartmentalization. The benefits of architectural phase compartmentalization are listed in Figure
10.

0%

0%

4%

54%

42%

Absolutely
disagree

Disagree

Fair

Agree

Strongly agree

0% 0% 0%

27%

73%

Absolutely
disagree

Disagree

Fair

Agree

Strongly agree

0% 0% 4%

54%

42%

Absolutely
disagree

Disagree

Fair

Agree

Strongly agree

0% 0% 0%

27%

73%

Absolutely
disagree

Disagree

Fair

Agree

Strongly agree

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 18 of 30

Figure 10: Benefits of Architecture Phase Compartmentalization

Figure 11 reveals the suitability of the use of IID as a process model. Out of the 26 experts, 25
highly agreed with the suitability of IID in the development process.

Figure 11: The Used of Iterative and Incremental Development (IID)

Moreover, Figure 12 shows that 58% of the experts strongly agreed that the 2DCBS provides
traceability, 38% agreed, and only 4% rated this statement as fair. The survey also showed that 62%
of the experts strongly agreed and 15% agreed that customization of application design based on the
components helps reduce development cost. However, 23% of the experts rated this statement as fair.
These survey results are presented in Figure 13. According to Figure 14, a total of 96% of the experts
highly agreed that the closed-loop feature promotes the reuse of components from previous
development life cycles. From the survey results, the phases and processes involved in the 2DCBS
framing allows for short development time, increased productivity and product quality, and
reusability of CBSD, thereby forecasting the successful application of CBSD.

0 0 1

12 13

0 0 1

8

17

0 0 1

14

11

0 0 1

4

21

0

5

10

15

20

25

Absolutely
disagree

Disagree Fair Agree Strongly
agree

E
xp

er
ts

 T
ot

al

Likert Scale

Improves cost effectiveness of
software development

Manages parallel development
process

Helps developers reduce
development time and minimize
use of resources

Enhances communication and
teamwork

0 0
1

9

16

0 0
1

7

18

0 0
1

9

16

0

2

4

6

8

10

12

14

16

18

20

Absolutely
disagree

Disagree Fair Agree Strongly
agree

E
xp

er
ts

 T
ot

al

Likert Scale

Distributes software
development process

Reduces distribution problems
by rapid reaction to changes

Allows software development
process overcome uncertainties
and unpredictable changes

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 19 of 30

Figure 12: 2DCBS Provides Traceability

Figure 13: Cost Reduction Based on Customization of
Application Design

Figure 14: Closed-loop will Promote the Reusability

8.2 Verifying the Dependability Attributes

An empirical study on the proposed 2DCBS model was discussed in our previous work in [83].
This empirical study aimed to apply the proposed 2DCBS model to the development of an ICT portal.
An evaluation of the developed ICT portal was carried out using VATs to verify the dependability
attributes of the developed ICT portal. Two versions of the ICT portal were developed to evaluate
the dependability attributes of the 2DCBS model. The first version was developed with the traditional
CBSD model (not embedded with dependability attributes). This version is referred to as “traditional
deployment" hereafter. The second version of the ICT portal was developed with the 2DCBS model
with embedded dependability attributes. This version is referred to as “2DCBS deployment”
hereafter. The evaluation of the ICT portal was performed based on the following two key
dimensions:

1. 2DCBS deployment should mitigate failures better than traditional deployment.
2. 2DCBS deployment should mitigate vulnerabilities better than traditional deployment.

Different sets of experiments were performed to evaluate the ICT portal based on these two

dimensions. Traditional deployment served as the reference in the comparison with the 2DCBS
results from both cases. The comparison was performed to investigate the effects of the two
deployment methods on the level of vulnerabilities in the system. The results obtained during JMeter,

0% 0% 4%

38%

58%

Absolutely disagree

Disagree

Fair

Agree

Strongly agree

0% 0%

23%

15%62%

Absolutely
disagree

Disagree

Fair

Agree

Strongly agree

0%

0%

4%

27%

69%

Absolutely
disagree

Disagree

Fair

Agree

Strongly agree

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 20 of 30

OpenVAS, and RATS (Rough Auditing Tool for Security) scanning of the ICT portal with different
deployment methods are presented in the following subsections.

8.2.1 Apache JMeter Results

JMeter was used to measure the availability and reliability attributes of the ICT portal. The
results were collected after implementing all the test plans. Figure 15 shows that before 100 threats,
the values of Bar1 and Bar2 throughputs are close because only a few threats were loaded to the test
bed at that period. From 150 threats to 200 threats, the average value of Bar1 is approximately 10%
higher than that of Bar2. However, increasing the number of threats to more than 200 per second
causes a rapid decrease in the value of Bar2, which in turn causes failure in the system services.

The decrease in Bar1 is not obvious, and the services remain active. This finding indicates that
the service system with 2DCBS deployment is better than that with traditional deployment, and that
the fluctuation in Bar1 is less sharp than that in Bar2. Thus, Bar1 operates more steadily in service
systems. Figure 15 provides a summary of the availability and reliability results of 2DCBS
deployment and traditional deployment. Increasing the number of requests per second causes a
linear change in the observed availability and reliability. However, when the number of requests
exceeds the threshold value of 175, a decline in availability and reliability begins. The decline in
availability and reliability in the 2DCBS deployment is only 3.34%, demonstrating improved
availability and reliability compared with traditional deployment. The results of the assessment show
that 2DCBS deployment performs better than traditional deployment when the load of the system is
increased gradually. The graph indicates that throughput for Bar1 is stable with 100 users to 200 users
but unstable with 250 users, because the ICT portal is designed to support only 200 users
concurrently.

Figure 15: Availability and Reliability Comparison

8.2.2 OpenVAS Results

OpenVAS was used to scan traditional and 2DCBS deployments. Two separate scans were
performed using the same configuration. The first scan was performed on traditional deployment,
and the second scan was performed on 2DCBS deployment. Two separate reports were
generated from the scans. These reports list the vulnerabilities detected in traditional and 2DCBS
deployments. Each of Figures 16 to 18 presents the filtered results from each scan. The detected
vulnerabilities were included based on their type and were linked to pertinent dependability
attributes.

0

0.2

0.4

0.6

0.8

1

1.2

10 50 100 150 175 200 250 300 350 400

T
h

ro
u

gh
p

u
t

%

Threads per second

Bar1: 2DCBS Deployment

Bar2: Traditional Deployment

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 21 of 30

Figure 16 presents the comparison of confidentiality vulnerabilities. The numbers of
vulnerabilities detected by OpenVAS under the high-risk factor are 24 for traditional deployment
and 5 for 2DCBS deployment. Under the medium-risk factor, 12 vulnerabilities are detected for
traditional deployment and 8 for 2DCBS deployment. Under the low-risk factor, 18 vulnerabilities
are detected for traditional deployment and 12 for 2DCBS deployment.

Figure 16: Confidentiality Vulnerabilities Comparison

Figure 17 presents the comparison of integrity vulnerabilities. The numbers of vulnerabilities
detected by OpenVAS under the high-risk factor are 29 for traditional deployment and 8 for 2DCBS
deployment. Under the medium-risk factor, 14 vulnerabilities are detected for traditional deployment
and 12 for 2DCBS deployment. Under the low-risk factor, 26 vulnerabilities are detected for
traditional deployment and 18 for 2DCBS deployment.

Figure 17: Integrity Vulnerabilities Comparison

Figure 18 presents the comparison of safety vulnerabilities. The numbers of vulnerabilities
detected by OpenVAS under the high-risk factor are 34 for traditional deployment and 7 for 2DCBS
deployment. Under the medium-risk factor, 26 vulnerabilities are detected for traditional deployment
and 18 for 2DCBS deployment. Under the low-risk factor, 22 vulnerabilities are detected for
traditional deployment and 14 for 2DCBS deployment.

12

8

5

18

12

24

0

5

10

15

20

25

30

Low Medium High

V
u

ln
er

ab
il

it
ie

s

Risk Factor

2DCBS Deployment

Traditional Deployment

18

12

8

26

14

29

0

5

10

15

20

25

30

35

Low Medium High

V
u

ln
er

ab
il

it
ie

s

Risk Factor

2DCBS Deployment

Traditional Deployment

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 22 of 30

Figure 18: Safety Vulnerabilities Comparison

8.2.3 RATS Results

RATS was used to measure the maintainability attribute of the ICT portal. Figure 19 presents the
comparison between traditional and 2DCBS deployments in terms of system maintainability. The
comparison results show that 75% of the issues in traditional deployment source code were detected,
whereas 25% of the issues in the 2DCBS deployment source code were detected. System
maintainability is evidently improved when the 2DCBS model is adopted. Figure 19 also compares
the maintainability vulnerabilities. The numbers of vulnerabilities detected by RATS under the high
risk factor are 36 for traditional deployment and 8 for 2DCBS deployment. Under the medium-risk
factor, 14 vulnerabilities are detected for traditional deployment and 12 for 2DCBS deployment.
Under the low-risk factor, 26 vulnerabilities are detected for traditional deployment and 18 for 2DCBS
deployment.

Figure 19: Maintainability Vulnerabilities Comparison

8.2.4 Summary of Verification Process

Traditional deployment served as the reference for comparison with the 2DCBS results. The
results of the VATs on the dependability attributes of the ICT portal show that 2DCBS deployment

14

18

7

22

26

34

0

5

10

15

20

25

30

35

40

Low Medium High

V
u

ln
er

ab
il

it
ie

s

Risk Factor

2DCBS Deployment

Traditional Deployment

18

12

8

26

14

36

0

5

10

15

20

25

30

35

40

Low Medium High

V
u

ln
er

ab
il

it
ie

s

Risk Factor

2DCBS Deployment

Traditional Deployment

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 23 of 30

mitigates failures better than traditional deployment does. Moreover, 2DCBS deployment mitigates
vulnerabilities better than traditional deployment does. The degradation in availability and reliability
in the 2DCBS deployment is only 3.34%, demonstrating improved availability and reliability
compared with traditional deployment. The assessment results show that 2DCBS deployment is more
efficient than traditional deployment as system load gradually increases. In addition, the
vulnerabilities of the systems are promptly tolerated and risks are reduced to a manageable level in
2DCBS deployment.

9. Discussion

We have surveyed the existing CBSD models from the literature and have indicated that each of
the existing models has its own advantages and disadvantages. This work also compares the 2DCBS
model with other available models to present the phases, stages, and features of the 2DCBS model.
The key features that the 2DCBS model possesses but most other models lack are the following:

1. Demonstration of Embedding Dependability Attributes: The 2DCBS model

demonstrates the process of embedding the six dependability attributes in the CBSD
process. This model systematically guides software developers, designers, and
engineers in building a dependable system. In addition, the model traces dependability
attributes, requirements, design, implementation, and testing throughout the CBSD
process, thereby enabling the model to assist managers and developers during the
development of software systems.

2. Guideline for Embedding Dependability Attributes in CBSD Phases: The proposed
model outlines a guideline based on the best practice method. The guideline was
designed with the assistance of expert software developers and security consultants
from a local company in Malaysia. This guideline consists of a set of best practices
designed to embed dependability attributes in the CBSD process. The guideline includes
the processes of eliciting and defining the requirements of dependability attributes by
employing risk analysis and assessment approach.

3. Empirical Study: An empirical study on the 2DCBS model was carried out based on
industrial practicality. This empirical study applies the 2DCBS model to the
development of an ICT portal. Demonstrating the ICT portal development following the
2DCBS model can ensure the proper integration of the dependability attributes and
generalization of the results.

4. Evaluations: Evaluations of the 2DCBS model were carried out in this study to verify
that the 2DCBS model is capable of mitigating the vulnerabilities in the developed
system. Two elements of the 2DCBS model were evaluated as follows: a) framing of the
2DCBS architecture was evaluated by conducting an expert evaluation and b)
dependability attributes embedded in the 2DCBS process were evaluated by verifying
the dependability attributes of the developed ICT portal.

5. Compartmentalization: The 2DCBS model solves the sequential structure issue by
compartmentalizing the architectural phases. Compartmentalization allows several
activities to be performed in parallel without having to stringently complete the
requirements of one activity before starting with another activity. Thus, architectural
phase compartmentalization helps developers reduce development time and resources.

6. Reusability: The 2DCBS model promotes component reuse by providing a specific
location in the model that forces developers to consider the reusability feature in the
development process.

7. IID: The 2DCBS model includes the use of IID method as a process in software
development. IID is a system developed by iterations and incremental additions of new
features. IID is suitable for distributed development and reduces distribution problems
by its rapid reaction to changes.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 24 of 30

Table 4 highlights the comparison between 2DCBS model and the existing CBSD models based

on aforementioned key features. Models that support the indicated key features are checked (√). The
2DCBS model is showing that it covers all of the listed key features.

Table 4: Comparison between 2DCBS Model and the Existing CBSD Models

 Key Features

CBSD Models
D

em
on

st
ra

tio
n

of
 E

m
be

dd
in

g
D

ep
en

da
bi

lit
y

A
ttr

ib
ut

es

G
ui

de
lin

es
 fo

r C
om

po
si

ng

D
ep

en
da

bi
lit

y
A

ttr
ib

ut
es

 in

C
BS

D
 P

ha
se

s

Em
pi

ri
ca

l S
tu

dy

Ex
pe

rt
 E

va
lu

at
io

n

D
ep

en
da

bi
lit

y/
Se

cu
ri

ty

Ev
al

ua
tio

n

C
om

pa
rt

m
en

ta
liz

at
io

n

R
eu

sa
bi

lit
y

It
er

at
iv

e
an

d
In

cr
em

en
ta

l
D

ev
el

op
m

en
t (

II
D

)

Brown et al. [60] √
Aoyama [61] √
Tran [62] √ √
Lee, et al. [63] √ √
Yau and Dong [64] √ √
Cheesman, et al. [65] √ √
Paul [66] √ √
Crnković [67] √ √
Hutchinson, et al.[68] √ √
Capretz [69] √ √
Mei [70] √ √
Capretz [71] √ √
Crnkovic, et al. [72] √ √ √
Aris and Salim [10] √ √ √ √ √
Qureshi et al. [73] √ √ √
Kouroshfar, et al. [74] √ √ √
Sharp and Ryan [57] √ √ √
Gill and Tomar [1] √ √ √
Bose [75] √ √ √
Chhillar et al. [55] √ √ √
Lau, et al. [76] √ √ √
Pandeya et al. [54] √ √ √
Shang et al. [5] √ √ √
Sommerville [16] √ √ √
Ahmed et al. [25] √ √ √ √
IrshadKhan et al. [53] √ √ √ √ √
2DCBS Model √ √ √ √ √ √ √ √

10. Conclusion

The aims of all software development is to produce an application that is readily available to
resolve software issues in an organization, reliable in terms of its operation, can ensure confidentiality
at the highest level, protect the safety of sensitive data, uphold the integrity of the system, and require

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 25 of 30

low-cost maintenance. This paper explored the above-mentioned issues and modeled them in the
CBSD process as six dependability attributes, namely, availability, reliability, confidentiality, safety,
integrity, and maintainability. These attributes were embedded in the 2DCBS model based on a
proposed guideline to develop a dependable system. This guideline can assist software developers
in incorporating the dependability attributes into the requirement analysis, design, implementation,
and testing process. The vulnerabilities of the systems can be promptly tolerated and risks can be
reduced to a manageable level.

The evaluation of 2DCBS model were carried out based on two stages. First, 2DCBS framing was
evaluated by conducting a survey and an interview with experts. Second, the dependability attributes
of the developed system were verified using VATs. The survey results on 2DCBS framing indicate
that experts highly agreed on the following: a) all 2DCBS processes are essential to CBSD, b) 2DCBS
solves the sequential structure issue, c) architectural phase compartmentalization is beneficial, d) IID
is suitable for distributed development, and e) 2DCBS specifies a location for reusable components.
Thus, 2DCBS framing achieves its objective. Aside from that, the vulnerability assessment results
show that compared with the traditional development model, the 2DCBS model could mitigate
vulnerabilities. The degradation observed in the availability of the 2DCBS model was improved,
being only 3.34%. The assessment results show that 2DCBS deployment performed more efficiently
than traditional deployment does as the system load gradually increased.

Furthermore, to significantly improve the CBSD process, this paper presented a model that
provides traceability and is easy to understand and apply even by those who are new to the CBSD
approach. Furthermore, the implementation of the 2DCBS model in developing an ICT portal proves
its versatility in software development. The links between the CBSD phases, which are requirement
analysis, design, implementation, and testing, and the dependability attributes, which have been
neglected in existing studies, are clearly shown in this study. These links can further convince
software developers that the CBSD approach is completely reliable. As a result, the confidence of the
software industry stakeholders in the reliability of CBSD products can be increased.

Our future work will focus on providing a tool support for developers based on 2DCBS model.
This feature can be considered in future investigations to present a visual modelling environment for
embedding dependability attributes; allow automatic mapping of analysis results; and design,
implement, and assess the dependability attributes. In this paper, the 2DCBS model is applied to
develop a web application system. The developed system is evaluated after the system is deployed
within a short run time. Therefore, future studies can evaluate the developed system deployed within
a long run time (for example, one year) to investigate system tolerance in a real-time, long-running
system.

Acknowledgments: The research is partially supported by the Universiti Malaysia Pahang. Project number:
(RDU-160372).

Author Contributions: All the authors have contributed to this work. All authors read and approved the final
manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gill, N.; Tomar, P. Modified development process of component-based software
engineering. ACM SIGSOFT Software Engineering Notes 2010, 35, 1-6.

2. Brada, P. Enhanced type-based component compatibility using deployment context
information. Electronic Notes in Theoretical Computer Science 2011, 279, 17-31.

3. Ganguly, D.; Bhattacharyya, S. Winning the industrial competitiveness with e-commerce
adopting component-based software architecture. Advances in Computer Science, Intelligent
System and Environment 2011, 69-75.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 26 of 30

4. Jun, G.; Bo, W.; Yunsheng, W.; Bin, Z.; Jiaojiao, W. In Research of the software aging
regeneration strategy based on components, 2012; Springer: pp 601-608.

5. Shang, M.; Wang, H.; Jiang, L. In The development process of component-based application
software, 2011; IEEE: pp 11-14.

6. Carvalho, F.; Meira, S.R.L.; Freitas, B.; Eulino, J. In Embedded software component quality and
certification, 35th Euromicro Conference on Software Engineering and Advanced
Applications, 2009. SEAA '09, Patras 2009; IEEE: Patras pp 420-427.

7. Nadeem, A.; Asim, M.R.; Qureshi, M. A step forward to component-based software cost
estimation in object-oriented environment. Pakistan Journal of Science 2012, 62, 250-257.

8. Ahmed, B.; Rizwan, Q.; Asif, I.K. A framework for next generation mobile and wireless
networks application development using hybrid component based development model.
International Journal of Research and Reviews in Next Generation Networks (IJRRNGN) 2012, 1,
51-58.

9. Xin, C.; Zhao, J.; Fu, K.; Chang, Y. Refactoring of mechanical model simulation software
based on component technology. Advanced Materials Research 2012, 466, 1145-1149.

10. Aris, H.; Salim, S. The development of a simplified process model for cbsd. The International
Arab Journal of Information Technology 2007, 4, 89-96.

11. Mohanty, S.; Acharya, A.A.; Mohapatra, D.P. In A model based prioritization technique for
component based software retesting using uml state chart diagram, 2011; IEEE: pp 364-368.

12. Venčkauskas, A.; Štuikys, V.; Toldinas, J.; Jusas, N. A model-driven framework to develop
personalized health monitoring. Symmetry 2016, 8, 65.

13. Conejero, J.M.; Sánchez-Figueroa, F.; Rodríguez-Echeverría, R.; Preciado, J.C. Scpl: A social
cooperative programming language to automate cooperative processes in (a) symmetric
social networks. Symmetry 2016, 8, 71.

14. Qin, G.; Wang, L.; Li, Q. Resource symmetric dispatch model for internet of things on
advanced logistics. Symmetry 2016, 8, 20.

15. Moradian, E.; Håkansson, A. Controlling security of software development with multi-
agent system. Knowledge-Based and Intelligent Information and Engineering Systems 2010, 98-
107.

16. Sommerville, I. Software engineering: Ninth edition. Pearson-Addison Wesley: Boston
Massachusetts United States, 2011.

17. Karen, G. Software security assurance: A state-of-the-art report (soar); DTIC Document: 2007.
18. Karen, G.; Winograd, T.; McKinley, H.L.; Holley, P.; Hamilton, B. Security in the software

life cycle: Making software development processes–and the software produced by them–
more secure, draft 1.1. Department of Homeland Security 2006, 46.

19. Redwine Jr, S. Software assurance: A curriculum guide to the common body of knowledge
to produce, acquire, and sustain secure software. H. Security 2007.

20. Mir, I.A.; Quadri, S. Analysis and evaluating security of component-based software
development: A security metrics framework. International Journal of Computer Network and
Information Security (IJCNIS) 2012, 4, 21.

21. Cinque, M.; Cotroneo, D.; Pecchia, A. Enabling effective dependability evaluation of
complex systems via a rule-based logging framework. International Journal On Advances in
Software 2010, 2, 323-336.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 27 of 30

22. Goertzel, K.M. Introduction to software security. In Build Security In, Department of
Homeland Security and Department of Defense Data and Analysis Center for Software:
2009.

23. McGraw, G. Software security. Datenschutz und Datensicherheit-DuD 2012, 36, 662-665.
24. Yi, S.; Li, D. In The research of component-based dependable encapsulation, Proceedings of the

13th International Conference on Mathematical Methods in Electrical Engineering and
Computer Science, Angers, France, 2011; World Scientific and Engineering Academy and
Society (WSEAS): Angers, France, pp 27-30.

25. Ahmed, B.; Abdurrahman, A.-T.; Rizwan, Q.; Asif, I.K. Novel component based
development model for sip-based mobile application. International Journal of Software
Engineering & Applications (IJSEA) 2012, 3, 85-99.

26. AUTOSAR, G.R. Autosar–technical overview v2. 0.1. June: 2006.
27. Basu, A.; Bozga, M.; Sifakis, J. In Modeling heterogeneous real-time components in bip, Fourth

IEEE International Conference on Software Engineering and Formal Methods, 2006. SEFM
2006., 2006; Ieee: pp 3-12.

28. Box, D. Essential com. Object technology series. Addison-Wesley: Reading, England, 1997.
29. Åkerholm, M.; Carlson, J.; Fredriksson, J.; Hansson, H.; Håkansson, J.; Möller, A.;

Pettersson, P.; Tivoli, M. The save approach to component-based development of vehicular
systems. Journal of Systems and Software 2007, 80, 655-667.

30. Sentilles, S.; Vulgarakis, A.; Bureš, T.; Carlson, J.; Crnković, I. A component model for
control-intensive distributed embedded systems. Component-Based Software Engineering
2008, 310-317.

31. Van Ommering, R.; Van Der Linden, F.; Kramer, J.; Magee, J. The koala component model
for consumer electronics software. Computer 2000, 33, 78-85.

32. DeMichiel, L.; Keith, M. Jsr 220: Enterprise javabeans, version 3.0: Ejb core contracts and
requirements. Final release, Sun Microsystems 2006.

33. Emmerich, W. In An overview of omg/corba, Distributed Objects-Technology and Application
(Digest No: 1997/332), IEE Colloquium on, 1997; IET: pp 1/1-1/6.

34. Chen, J.; Wang, H.; Zhou, Y.; Bruda, S.D. Complexity metrics for component-based
software systems. International Journal of Digital Content Technology and its Applications 2011,
5, 235-244.

35. Kumari, U.; Bhasin, S. A composite complexity measure for component-based systems.
ACM SIGSOFT Software Engineering Notes 2011, 36, 1-5.

36. Cann, S.; Rossi, A.; Pilgrim, P. Frameworks for building component based applications.
http://www.jcorporate.com/econtent/Content.do?state=resource&resource=702: 2004.

37. Arvinder, K.; Mann, K. Component based software engineering. International Journal of
Computer Applications IJCA 2010, 2, 105-108.

38. Fredriksson, J. Improving predictability and resource utilization in component-based embedded
real-time systems. School of Innovation, Design and Engineering, Mälardalen University:
2008.

39. Kaur, K.; Kaur, P.; Bedi, J.; Singh, H. In Towards a suitable and systematic approach for
component based software development, 2007; Citeseer: pp 190-193.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 28 of 30

40. Sözer, H.; Hofmann, C.; Tekinerdoğan, B.; Aksit, M.; Gelenbe, E.; Lent, R.; Sakellari, G.
Runtime verification of component-based embedded software. 2012.

41. Salmi, N.; Ioualalen, M. Towards efficient component performance analysis in component
based architectures. Software Quality. Process Automation in Software Development 2012, 121-
142.

42. Yang, Z.; Ju, F.; Shao, B. Research on integration of spatial data mining and gis based on
component technology. Advances in Computational Environment Science 2012, 161-167.

43. Tekumalla, B. Status of empirical research in component based software engineering-a
systematic literature review of empirical studies. 2012.

44. Mathias, E.; Baude, F. In Multi-domain grid/cloud computing through a hierarchical component-
based middleware, Proceedings of the 8th International Workshop on Middleware for Grids,
Clouds and e-Science, New York, USA, 2010; ACM: New York, USA, p 2.

45. Navas, J.F.; Babau, J.P.; Pulou, J. Reconciling run-time evolution and resource-constrained
embedded systems through a component-based development framework. Science of
Computer Programming 2012.

46. Riaz, S. Moving towards component based software engineering in train control
applications. Linköping University, 2012.

47. Baumgart, S.; Froberg, J.; Punnekkat, S. In Towards efficient functional safety certification of
construction machinery using a component-based approach, 3rd International Workshop on
Product Line Approaches in Software Engineering (PLEASE), 2012, 2012; IEEE: pp 1-4.

48. Adler, R.; Schaefer, I.; Trapp, M.; Poetzsch-Heffter, A. Component-based modeling and
verification of dynamic adaptation in safety-critical embedded systems. ACM Transactions
on Embedded Computing Systems (TECS) 2010, 10, 20.

49. Neelam, S. A component-based model for e-business, integrating knowledge management
and e-commerce. Jour-nal of Information and Operations Management ISSN 2012, 0976-7754.

50. Otte, W.R.; Gokhale, A.; Schmidt, D.C. Efficient and deterministic application deployment
in component-based enterprise distributed real-time and embedded systems. Information
and Software Technology 2012.

51. Kosuki, Y.; Okada, Y. In 3d visual component based development system for medical training
systems supporting haptic devices and their collaborative environments, Sixth International
Conference on Complex, Intelligent and Software Intensive Systems (CISIS), 2012, 2012;
IEEE: pp 687-692.

52. Baacke, L.; Mettler, T.; Rohner, P. Component-based process modelling in health care. In
17th European Conference on Information Systems, ECIS 2009, Verona, Italy, 2009; pp 430–441.

53. IrshadKhan, A.; Alam, M.; Noor-ul-Qayyum, N.-u.-Q.; Ali Khan, U. Validation of
component based software development model using formal b-method. International Journal
of Computer Applications 2013, 67, 24-35.

54. Pandeya, S.S.; Tripathi, A.K. Testing component-based software: What it has to do with
design and component selection. Journal of Software Engineering and Applications 2011, 4.

55. Chhillar, R.S.; Kajla, P. A new-knot model for component based software development.
International Journal of Computer Science 2011, 8.

56. Kaur, K.; Singh, H. Candidate process models for component based software development.
Journal of Software Engineering 2010, 4, 16-29.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 29 of 30

57. Sharp, J.; Ryan, S. A theoretical framework of component-based software development
phases. ACM SIGMIS Database 2010, 41, 56-75.

58. Olsen, S.L.N.; Loe, K. The coexsel tool. Norwegian University of Science and Technology,
NTNU. Department of Computer and Information Science, IDI, Norwegian, 2005.

59. Hasan Kahtan ; Nordin Abu Bakar ; Rosmawati Nordin. In Reviewing the challenges of
security features in component based software development models, IEEE Symposium on E-
Learning, E-Management and E-Services (IS3e), 2012, Kuala Lumpur 2012; IEEE Kuala
Lumpur pp 1 -6.

60. Brown, A.W.; Wallnan, K.C. In Engineering of component-based systems, 1996; Published by
the IEEE Computer Society: p 414.

61. Aoyama, M. In Process and economic model of component-based software development: A study
from software cals next generation software engineering program, 1997; IEEE: pp 100-103.

62. Tran, V. In Component-based integrated systems development: A model for the emerging
procurement-centric approach to software development, 1998; IEEE: pp 128-135.

63. Lee, S.; Yang, Y.; Cho, E.; Kim, S.; Rhew, S. In Como: A uml-based component development
methodology, 1999; IEEE Computer Society: p 54.

64. Yau, S.; Dong, N. Integration in component-based software development using design
patterns. COMPSAC-NEW YORK- 2000, 369-376.

65. Cheesman, J.; Daniels, J.; Szyperski, C. Uml components: A simple process for specifying
component-based software. Addison-Wesley Reading, MA: 2001; Vol. 2.

66. Paul, A. Ebiz components. Objective View, no. 6 2003, pp. 12-20.
67. Crnković, I. Component-based software engineering-new challenges in software

development. In Journal of computing and information technology CIT, IEEE: Minneapolis, MN,
USA, 2003; Vol. 11, pp 157 - 158.

68. Hutchinson, J.; Kotonya, G.; Sommerville, I.; Hall, S. In A service model for component-based
development, 2004; IEEE: pp 162-169.

69. Capretz, L. A software process model for component-based development. Information
Technology Journal 2004, 3, 176-183.

70. Mei, H. Abc: Supporting software architectures in the whole lifecycle. In The Second
International Conference on Software Engineering and Formal Methods SEFM 2004., IEEE
Computer Society: Beijing, China, 2004; pp 342 - 343.

71. Capretz, L. Y: A new component-based software life cycle model. Journal of Computer Science
2005, 1, 76-82.

72. Crnkovic, I.; Chaudron, M.; Larsson, S. In Component-based development process and
component lifecycle, International Conference on Software Engineering Advances, Tahiti
2006; Tahiti p44.

73. Qureshi, M.; Hussain, S. A reusable software component-based development process
model. Advances in Engineering Software 2008, 39, 88-94.

74. Kouroshfar, E.; Yaghoubi Shahir, H.; Ramsin, R. Process patterns for component-based
software development. Component-Based Software Engineering 2009, 54-68.

75. Bose, D. Component based development. Cornell University Department of Computer
Science, 2010.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

 30 of 30

76. Lau, K.K.; Taweel, F.M.; Tran, C.M. In The w model for component-based software development,
2011; IEEE: pp 47-50.

77. Hasan Kahtan; Nordin Abu Bakar; Rosmawati Nordin. Dependability attributes for
increased security in component-based software development. Journal of Computer Science
2014, 10, 1298-1306.

78. Hasan Kahtan; Nordin Abu Bakar; Rosmawati Nordin. Awareness of embedding security
features into component-based software development model: A survey. Journal of Computer
Science 2014, 10, 1411-1417.

79. Hasan Kahtan ; Nordin Abu Bakar ; Rosmawati Nordin; Mansoor Abdullateef
Abdulgabber. Evaluation dependability attributes of web application using vulnerability
assessments tools. Information Technology Journal 2014, 13, 2240-2249.

80. Hasan Kahtan; Nordin Abu Bakar ; Rosmawati Nordin. Embedding dependability
attributes into component-based software development using the best practice method: A
guideline. Journal of Applied Security Research 2014, 9, 348 - 371.

81. Runeson, P.; Host, M.; Rainer, A.; Regnell, B. Case study research in software engineering:
Guidelines and examples. John Wiley & Sons: Hoboken, New Jersey, 2012.

82. Coppit, D.; Sullivan, K.J. In Multiple mass-market applications as components, International
Conference on Software Engineering Limerick, Ireland, 2000; IEEE: Limerick, Ireland, pp
273-282.

83. Hasan Kahtan ; Nordin Abu Bakar ; Rosmawati Nordin; Mansoor Abdullateef
Abdulgabber. Embedding dependability attributes into component-based software
development: A guideline. Computer Fraud & Security - Elsevier 2014.

© 2016 by the authors; licensee Preprints, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2016 doi:10.20944/preprints201608.0155.v1

http://dx.doi.org/10.20944/preprints201608.0155.v1

