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Abstract: We introduce the Symplectic Structure of Information Geometry based on Souriau’s Lie
Group Thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances
through co-adjoint action of a group on its moment space, defining physical observables like
energy, heat, and moment as pure geometrical objects. Using Geometric (Planck) Temperature of
Souriau model and Symplectic cocycle notion, the Fisher metric is identified as a Souriau
Geometric Heat Capacity. Souriau model is based on affine representation of Lie Group and Lie
algebra that we compare with Koszul works on G/K homogeneous space and bijective
correspondence between the set of G-invariant flat connections on G/K and the set of affine
representations of the Lie algebra of G. In the framework of Lie Group Thermodynamics, an
Euler-Poincaré equation is elaborated with respect to thermodynamic variables, and a new
variational principal for thermodynamics is built through an invariant Poincaré-Cartan-Souriau
integral. The Souriau-Fisher metric is linked to KKS (Kostant-Kirillov-Souriau) 2-form that
associates a canonical homogeneous symplectic manifold to the co-adjoint orbits. We apply this
model in the framework of Information Geometry for the action of an affine Group for exponentiel
families, and provide some illustration of use cases for multivariate Gaussian densities.
Information Geometry is presented in the context of seminal work of Fréchet and his
Clairait-Legendre equation. Souriau model of Statistical Physics is validated as compatible with
Balian gauge model of thermodynamics. We recall the precursor work of Casalis on affine group
invariance for natural exponential families.
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Invariant; Geometric Mechanics; Euler-Poincaré Equation; Fisher Metricc Gauge Theory;
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“Lorsque le fait qu’on rencontre est en opposition avec une théorie régnante, il faut accepter le fait et
abandonner la théorie, alors méme que celle-ci, soutenue par de grands noms, est généralement
adoptée » - Claude Bernard

«Au départ, la théorie de la stabilité structurelle m’avait paru d'une telle ampleur et d'une telle
généralité, qu’avec elle je pouvais espérer en quelque sorte remplacer la thermodynamique par la
géométrie, géométriser en un certain sens la thermodynamique, éliminer des considérations
thermodynamiques tous les aspects d caractére mesurable et stochastiques pour ne conserver que la
caractérisation géométrique correspondante des attracteurs. » René Thom - 1982

Lagrange works on “Mécanique Analytique (Analytic Mechanics)” has been interpreted by
Jean-Marie Souriau in the framework of differential geometry and has initiated a new discipline
called after Souriau, “Mécanique Géométrique (Geometric Mechanics)” [1,2, 133]. Souriau has
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observed that the collection of motions of a dynamical system is a manifold with an antisymmetric
flat tensor, that is a symplectic form where the structure contains all the pertinent information of the
state of the system (positions, velocities, forces, etc.). Souriau said : “Ce que Lagrange a vu, que n'a pas
vu Laplace, c’était la structure symplectique (What Lagrange saw , that has not seen Laplace was the symplectic
structure)”. Using the symmetries of a symplectic manifold, Souriau introduced a mapping which he
called the “moment map” [90, 109, 110], which takes its values in a space attached to the group of
symmetries (in the dual space of its Lie algebra). He called Dynamical Groups every dimensional
group of symplectomorphisms (an isomorphism between symplectic manifolds, a transformation of
phase space that is volume-preserving), and introduced Galileo Group for Classical Mechanics and
Poincaré Group for Relativistic Mechanics (both are sub-groups of Affine Group [80, [159]). For
instance, Galileo Group could be represented in a matrix form by (with A rotation, b the boost, c
space translation and e time translation):

x' A b cl|lx Ae SO(3) o n y we 50(3)
t|=10 1 e||t|withib,ce R® ,LieAlgebra|0 0 & |within,ye R’ @)
1| o o 1|1 ec R 0 0 0 ce R

GALILEO GROUP

Souriau associated to this moment map, the notion of symplectic cohomology, linked to the fact
that such a moment is defined up to an additive constant that brings into play an algebraic
mechanism (called cohomology). Souriau proved that the moment map is a constant of the motion,
and provided geometric generalization of Emmy Noether Invariant Theorem (invariants of E.
Noether theorem are the components of the moment map). For instance, Souriau gave ontological
definition of mass in classical mechanics as the measure of the symplectic cohomology of the action
of the Galileo group (the mass is no longer an arbitrary variable but a characteristic of the space).
This is no longer true for Poincaré Group in relativistic Mechanics, where the symplectic
cohomology is null, explaining the lack of conservation of mass in relativity. All the details of
classical mechanics thus appear as geometric necessities, as ontological elements. Souriau has also
observed that the symplectic structure has the property to be able to be reconstructed from its
symmetries alone, through a 2-form (called Kirillov-Kostant-Souriau form) defined on coadjoint
orbits. Souriau said that the different versions of mechanical science can be classified by the
geometry that each implies for space and time ; geometry is determined by the covariance of group
theory. Thus Newtonian mechanics is covariant by the group of Galileo, the Relativity by the group
of Poincaré; General Relativity by the "smooth" group (the group of diffeomorphisms of space-time).
But Souriau added “However, there are some statements of mechanics whose covariance belongs to a fourth
group rarely considered: the affine group, a group shown in the following diagram for inclusion. How is it
possible that a unitary point of view (which would be necessarily a true Thermodynamics) , has not yet come
to crown the picture? Mystery ...”.

Galillée \

Poincaré

affine  ———— lisse

Figure 1. Souriau Scheme about mysterious “Affine Group” of a true thermodynamics between
Galileo Group of Classical Mechanics, Poincaré Group of Relativistic Mechanics and Smooth Group
of General Relativity.
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As soon as 1966, Souriau applied his theory to Statistical Mechanics, developed it in the chapter
IV of his book “Structure of Dynamical systems”, and elaborated what he called a “Lie Group
Thermodynamics” [172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184]. Using Lagrange’s
viewpoint, in Souriau Statistical Mechanics, a statistical state is a probability measure on the
manifold of motions (and no longer in phase space [122]). Souriau observed that Gibbs equilibrium
is not covariant with respect to Dynamic groups of Physics. To solve this braking of symmetry,
Souriau introduced a new “Geometric Theory of Heat” where the equilibrium states are indexed by
a parameter [ with values in the Lie algebra of the group, generalizing the Gibbs equilibrium

states, where # plays the role of a geometric (Planck) temperature. The invariance with respect to
the group, and the fact that the entropy s is a convex function of this geometric temperature g,

imposes very strict, universal conditions (e.g. there exist necessarily a critical temperature beyond
which no equilibrium can exist). Souriau observed that the group of time translations of the
classical Thermodynamics [161, 162] is not a normal subgroup of the Galilei group, proving that if a
dynamical system is conservative in an inertial reference frame, it need not be conservative in
another. Based on this fact, Souriau generalized the formulation of the Gibbs principle to become
compatible with Galileo relativity in Classical Mechanics and with Poincaré relativity in Relativistic
Mechanics. The Maximum Entropy principle [95, 96, 97, 98, 99, 100, 101, 102, 151, 196] is preserved,
and the Gibbs density is given by the density of Maximum Entropy (among the equilibrium states
for which the average value of the energy takes a prescribed value, the Gibbs measures are those
which have the largest entropy), but with a new principle “If a dynamical system is invariant under a Lie
subgroup G’ of the Galileo group, then the natural equilibria of the system forms the Gibbs ensemble of the
dynamical group G’ ”. The classical notion of Gibbs canonical ensemble is extended for an
homogneous Symplectic Manifold on which a Lie Group (Dynamic group) has a symplectic action.
When the group is not abelian (non-commutative group), the symmetry is broken, and new
“cohomological” relations should be verified in Lie algebra of the group [81, 84, 85, 86]. A natural
equilibrium state will thus be characterized by an element of the Lie algebra of the Lie group,
determining the equilibrium temperature £ . The Entropy s(Q), parametrized by QO the

geometric heat (mean of energy U, element of the dual Lie algebra) is defined by the Legendre
transform [64, 149, 150, 154] of the Massieu Potential ®(f) parametrized by B (®(f) is the minus

logarithm of the partition function y,,(8)):
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Souriau completed his “Geometric Heat Theory” by introducing a 2-form in the Lie algebra, that is a
Riemannian metric tensor in the values of adjoint orbit of 5, [3,Z] with Z an element of the Lie

algebra. This metric is given for (5,0):
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Where © is a cocycle of the Lie algebra, defined by @ =7, with 6 a cocycle of the Lie group
defined by &(M)=0(4d,,(B))- Ad, O . We have observed that this metric g is also given by the

. . . 9°® Jdlogy . .. . )
hessian of the Massieu Potential =— =——579 as Fisher metric in classical Information
8p 2 2
op- I
Geometry theory [77], and this is a generalization of the Fisher Metric for homogeneous manifold.

We call this new metric, the Souriau-Fisher metric. As gs=- J , Souriau compared it by analogy

with classical thermodynamics to a “Geometric Specific heat” (Geometric Calorific Capacity).

The Potential theory of Thermodynamics and the introduction of “Characteristic Function”
(previous function ®(8)=-logy,(B) in Souriau theory) was initiated by Frangois Jacques
Dominique Massieu [137, 138, 139, 140]. Massieu was the son of Pierre Fran¢ois Marie Massieu and
Thérese Claire Castel. He married in 1862 with Mlle Morand and had 2 children. Graduated from
Ecole Polytechnique in 1851 and Ecole des Mines de Paris in 1956, he has integrated « Corps des
Mines ». He defended his PhD in 1861 on « Sur les intégrales algébriques des problemes de mécanique »
and on « Sur le mode de propagation des ondes planes et la surface de I'onde élémentaire dans les cristaux
biréfringents a deux axes » with the jury composed of Lamé, Delaunay et Puiseux. In 1870, Francois
Massieu presented his paper to the Academy of Sciences on “characteristic functions of the various
fluids and the theory of vapors”. The design of the characteristic function is the finest scientific title of
Mr. Massieu . A prominent judge, Joseph Bertrand , do not hesitate to declare, in a statement read to
the Academy of Sciences July 25, 1870, that "the introduction of this function in formulas that summarize
all the possible consequences of the two fundamental theorems seems, for the theory, a similar service almost
equivalent to the Clausius has made by linking the Carnot’s theorem to entropy”. The final manuscript was
published by Massieu in 1873, « Exposé des principes fondamentaux de la théorie mécanique de la chaleur
(Note destinée a servir d'introduction au Mémoire de I'auteur sur les fonctions caractéristiques des divers
fluides et la théorie des vapeurs) ».
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Figure 2. Extract from the 2" paper of Frangois Massieu to the French Academy of Sciences.
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Massieu has introduced the following potential ®(f3), called “characteristic function”, that is the

potential used by Souriau to generalized the theory: 4(p) (B.0)-®(B)= D= 9_ 5. But in his 3+
=~ T
T

paper, Massieu was influenced by M. Bertrand to replace the variable g = 1 (that he used in his two
T

first papers) by 7. We have then to wait 50 years more for the paper of Planck, who introduced

again the good variable g = 1 , and then generalized by Souriau, giving to Planck temperature £
T

an ontological and geometric status as element of the Lie algebra of the dynamic group. This Lie
Group Thermodynamics of Souriau is able to explain astronomical phenomenon (rotation of celestial
bodies: the Earth and the starts rotating about themselves). The geometric temperature £ can be

also interpreted as a space-time vector (generalization of the temperature vector of Planck), where
the temperature vector and entropy flux are in duality unifing heat conduction and viscosity
(equations of Fourier and Navier). In case of centrifuge system (e.g. used for enrichment of uranium),
the Gibbs Equilibrium state [77, 78] are given by Souriau equations as the variation in concentration
of the components of an inhomogeneous gas. Classical statistical mechanics corresponds to the
dynamical group of time translations, for which we recover from Souriau equations the concepts
and principles of dassical thermodynamics (temperature, energy, heat, work, entropy,
thermodynamic potentials) and of the kinetic theory of gases (pressure, specific heats, Maxwell's
velocity distribution, ...).

Souriau has also studied Continuous Medium Thermodynamics, where the « Temperature
Vector » is no longer constrained to be in Lie Algebra, but only contrained by phenomenologic
equations (e.g. Navier equations, ...). For Thermodynamic equilibrium, the « Temperature Vector »
is then a Killing vector of Space-Time. For each point X, there is a « Temperature Vector » £(X),

such it is an infinitesimal conformal transform of the metric of the univers g Conservation

equations can be then deduced for components of Impulsion-Energy tensor 77 and Entropy flux
S7: 9,77 =0 and 9,5’ =0.

0,.: covariant derivative

éiﬂj +9jﬂi =Ag; .
9, ﬁj + aj B - 21-; B.= /181-]- ,Bj :component of Temperature vector

A =0= Killing Equation

Before Jean-Marie Souriau, Constantin Carathéodory and Pierre Duhem [65, 66, 67, 68] initiated
theoretical works to generalize Thermodynamics . The axiomatic approach of thermodynamics was
published in 1909 in Mathematische Annalen [37] under the title “Examination of the foundations of
thermodynamics”  [Untersuchungen iiberdie ~Grundlagen der Thermodynamik] by Constantin
Carathéodory based on Carnot works [38]. Carathéodory introduced Entropy through a
mathematical approach based on the geometric behavior of a certain class of partial differential
equations called Pfaffians. Carathéodory’s investigations start by revisiting the first law and
reformulating the second law of thermodynamics in the form of two axioms. The first axiom applies
to a multiphase system change under adiabatic conditions (axiom of classical thermodynamics due
to Clausius [57][61]). The second axion assumes that in the neighborhood of any equilibrium state of
a system (of any number of thermodynamic coordinates), there exist states that are inaccessible by
reversible adiabatic processes. In 1891, Pierre Duhem published [65] the « On general equations of
thermodynamics » [Sur les équations générales de la Thermodynamique] in Annales Scientifiques de 1'Ecole
Normale Supérieure. Duhem writes “We made Dynamics a special case of thermodynamics , a science that
embraces common principles in all changes of state bodies , changes of places as well as changes in physical
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qualities » [Nous avons fait de la Dynamique un cas particulier de la Thermodynamique, une Science qui
embrasse dans des principes communs tous les changements d’état des corps, aussi bien les changements de lieu
que les changements de qualités physiques]. Four scientists were credited by Duhem with having carried
out “the most important researches on that subject”: F. Massieu had managed to derive
Thermodynamics from a “characteristic function and its partial derivatives”; ].W. Gibbs had shown
that Massieu’s functions “could play the role of potentials in the determination of the states of
equilibrium” in a given system; H. von Helmholtz had put forward “similar ideas”; von Oettingen
had given “an exposition of Thermodynamics of remarkable generality” based on general duality
concept in “Die thermodynamischen Beziehungen antithetisch entwickelt” published at St.
Petersburg in 1885. We have also to make reference to Henri Poincaré [121] that published the
paper [155] “Sur les tentatives d'explication mécanique des principes de la thermodynamique [On attempts of
mechanical explanation forthe principles of thermodynamics]” at the Comptes rendus de I'Académie des
sciences in 1889, in which he tried to consolidate links between mechanics and thermomechanics
principles. These elements were also developed in Poincaré’s Lecture of 1892 [156] on
“Thermodynamique” (Massieu has influenced Poincaré to introduce Massieu Characteristic
function in Probability [157]). In 1906, Henri Poincaré also published a note [158] “Reflection on The
kinetic theory of gases"[Réflexions sur la théorie cinétique des gazl, where he said that: “The kinetic theory of
gases leaves awkward points for those who are accustomed to mathematical rigor ... One of the points which
embarrassed me most was the following one: it is a question of demonstrating that the entropy keeps decreasing,
but the reasoning of Gibbs seems to suppose that having made vary the outside conditions we wait that the
regime is established before making them vary again. Is this supposition essential, or in other words, we could
arrive at opposite results to the principle of Carnot by making vary the outside conditions too fast so that the
permanent regime has time to become established ?”. Leon Brillouin made the link between Boltzmann
Entropy and negentropie of Information theory [27,28,29,30].

Jean-Marie Souriau has elaborated a disruptive and innovative “théorie géométrique de la chaleur
(Geometric Theory of Heat)”after the works of his predecessors: “théorie analytique de la chaleur
(Analytic Theory of Heat)” by Jean Baptiste Joseph Fourier, “théorie mécanique de la chaleur (Mechanic
Theory of Heat)” by Frangois Clausius and Francois Massieu and “théorie mathématique de la
chaleur (Mathematic Theory of Heat)” by Siméon-Denis Poisson [111], as illustrated on this figure:

THEORIE

SMATHEMATIOUE

DE LA CHALEUR;

PAR 5. D. POISSON,

THEOIIE MECANIQUE

LA CHALEUR

H. CLAUSIUS

Hesm 4 TR B S

LIE RN IN)

B 55 i, i o (1 e 1

et i

PARIS PARIS,
BACHELIER, IMPRIMEUR-LIERAIRE
FOUN LES MATHEMATIURS, Ls FVSUR, w.

UBELRIE SOV TIFRAN . ISTOMTRIELLE IF MIRALE
EeGENE LADHOIE, DRTEUR

.................. 1835

Figure 3. “théorie analytique de la chaleur (Analytic Theory of Heat)” by Jean Baptiste Joseph
Fourier, “théorie mécanique de la chaleur (Mechanic Theory of Heat)” by Francois Clausius and
“théorie mathématique de la chaleur (Mathematic Theory of Heat)” by Siméon-Denis Poisson.


http://dx.doi.org/10.20944/preprints201608.0078.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2016 doi:10.20944/preprints201608.0078.v1

7 of 56

Since the work of Henri Poincare and Elie Cartan, the theory of differential forms has become an
essential instrument of modern differential geometry [39,40,41,42] used by Jean-Marie Souriau for
identifying the space of motions as a symplectic manifold. But as said by Paulette Libermann, at the
Henri Poincaré exception who wrote shortly before his death a report on the work of Elie Cartan
during his application for the Sorbonne university, the French mathematicians did not see the
importance of Cartan breakthroughs. Souriau followed Lectures of Elie Cartan in 1945. The 2nd
student of Elie Cartan was Jean-Louis Koszul. Koszul introduced the concepts of affine spaces, affine
transformations and affine representations. More especially, we are interested by Koszul definition
for affine representations of Lie groups and Lie algebras. Koszul studied symmetric homogeneous
spaces and defined relation between invariant flat affine connections to affine representations of Lie
algebras, and characterized invariant Hessian metrics by affine representations of Lie algebras.
Koszul provided correspondence between symmetric homogeneous spaces with invariant Hessian
structures by using affine representations of Lie algebras, and proved that a simply connected
symmetric homogeneous space with invariant Hessian structure is a direct product of a Euclidean
space and a homogeneous self-dual regular convex cone. Let G be a connected Lie group and let G/K
be a homogeneous space on which G acts effectively, Koszul gave a bijective correspondence
between the set of G-invariant flat connections on G/K and the set of a certain class of affine
representations of the Lie algebra of G. The main theorem of Koszul is that let G/K be a homogeneous
space of a connected Lie group G and let gand k be the Lie algebras of G and K, assuming that G/K
is endowed with a G-invariant flat connection, then g admits an affine representation (f,4) on the
vector space E. Conversely, suppose that G is simply connected and that g is endowed with an
affine representation, then G/K admits a G-invariant flat connection.

Koszul has proved the following. Let Q be a convex domain in R" containing no complete
straight lines, and an associated convex cone V(Q)= {(ﬂ.x,x)e R"XR/xe Qe R*}. Then there exists

an affine embedding;:
/:xe QHme V(Q) (6)

If we consider 7 the group of homomorphism of A(n,R) into GL(n+1,R)given by:

f
se A(n,R) .-{ (g) q(ls)}e GL(n+1,R) )
and associated affine representation of Lie Algebra: {f q} 8)
0 0

with A(n,R) the group of all affine transformations of R". We have 5(G(Q))c G(V(Q)) and the
pair (n,¢) of the homomorphism 7:G(Q) — G(V(Q)) and themap /:Q —V(Q) is equivariant.

An Hessian structure (D,g) on a homogeneous space G/K is said to be an invariant Hessian
structure if both D and g are G-invariant. A homogeneous space G/K with an invariant Hessian
structure (D,g) is called a homogeneous Hessian manifold and is denoted by (G/K, D, g). Another
result of Koszul is that an homogeneous self-dual regular convex cone is characterized as a simply
connected symmetric homogeneous space admitting an invariant Hessian structure that is defined
by the positive definite second Koszul form (we have identified in a previous paper, that this second
Koszul form is related to Fisher metric). In parallel, Vinberg [197, 198] gave a realization of a
homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular
convex cones admit canonical Hessian structures, improving some results of Pyateckii-Shapiro that
studied realizations of homogeneous bounded domains by considering Siegel domains in
connection with automorphic forms. Koszul defined a characteristic function y, of a regular

convex cone Q, and showed that y, = Ddlogy,, is a Hessian metric on Q invariant under affine

automorphisms of Q. If Q is a homogeneous self dual cone, then the gradient mapping is a
symmetry with respect to the canonical Hessian metric, and is a symmetric homogeneous
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Riemannian manifold. More information on Koszul Hessian Geometry can be found in [32,33, 141,
142,143, 144, 145, 146, 147, 148].

In this paper, we make the link of Jean-Louis Koszul work with Souriau Model that uses an affine
representations of a Lie group and of a Lie algebra in a finite-dimensional vector space, seen as
special examples of actions. Souriau Model of Lie Group Thermodynamics is linked with Affine
representation of Lie Group and Lie Algebra. Let G be a Lie group and E a finite-dimensional vector
space. A map A:G — Aff(E)always can be written as A(g)(x) = R(g)(x)+60(g) with ge G,xe E
where the maps R:G — GL(E) and 8:G — E are determined by A. The map A is an affine

representation of G in E. The map 6:G — E is a one-cocycle of G with values in E, for the linear
representation R; it means that 6 is a smooth map which satisfies, for all g he G :

O(gh)=R(g)(0(h))+6(g) . The linear representation R is called the linear part of the affine

representation A, and @ is called the one-cocycle of G associated to the affine representation. Let
g be a Lie algebra and E a finite-dimensional vector space. A linear map a:g— aff (E) always can
be written as a(X)(x) =r(X)(x)+0O(X) with X € g,xe E where the linear maps r:g— g/(E) and
©:g — E are determined by 4. The map a is an affine representation of G in E . The linear map
©:g— E is a one-cocycle of G with values in E, for the linear representation r; it means that ©
satisfies, for all X,Yeg: O(X,Y])=r(X)O))-r(¥)(O(X)). ©@:g— E is called the one-cocycle of
g associated to the affine representation 4, and is related to the one-cocycle 8:G — E by:
O(X)=T6(X(e), Xeg-

The plan of the paper is the following. In chapter 2, we develop Souriau Symplectic Model of
Statistical Physics with illustration for Multivariate Gaussian densities and some link with seminal
work of Maurice Fréchet. In chapter 3, we develop Lie Group Thermodynamics model of Jean-Marie
Souriau and in chaper 4, the explanation of Souriau Affine representation of Lie Group and Lie
Algebra including: Affine representations and cocycles, Souriau Moment Map and Cocycles,
Equivariance of Souriau Moment Map, Action of Lie Group on a Symplectic Manifold and Dual
spaces of finite-dimensional Lie Algebras. In chapter 5 we identify what we call Souriau-Fisher
Metric of Lie Group Thermodynamics by analogy with Fisher metric of Information geometry [82, 83]
and the Souriau interpretation as geometric heat capacity. In chapter 6, we introduce new
Souriau-Euler-Poincaré equations of Lie Group Thermodynamics. In chapter 7, we introduce
Poincaré-Cartan Integral Invariant and Variational Principle for Souriau Lie Groups
Thermodynamics. In chapter 8, we make the link of Souriau works with Koszul Affine
representation of Lie Group and Lie Algebra. In chapter 9, we illustrate Koszul and Souriau Lie
Group models of Information Geometry for Multivariate Gaussian laws and in chapter 10 Souriau
metric for Multivariate Gaussian Densities. We give a conclusion in chapter 11 with research
prospects towards affine Poisson Geometry [112]. We have 3 appendices: Appendix A develops the
Clairaut(-Legendre) Equation of Maurice Fréchet associated to “distinguished functions” as
fundamental equation of Information geometry; Appendix B is about Balian Gauge Model of
Thermodynamics and its compliance with Souriau model; Appendix C is devoted to the link of
Casalis-Letac works on Affine Group Invariance for Natural Exponential Families with Souriau
works.

1. Souriau Symplectic Model of Statistical Physics

In 1970, Souriau introduced the concept of co-adjoint action of a group on its momentum space
(or “moment map”: mapping induced by symplectic manifold symmetries), based on the orbit
method works, that allows to define physical observables like energy, heat and momentum or
moment as pure geometrical objects (the moment map takes its values in a space determined by the
group of symmetries: the dual space of its Lie algebra). The moment(um) map is a constant of the
motion and is associated to symplectic cohomology (assignment of algebraic invariants to a


http://dx.doi.org/10.20944/preprints201608.0078.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2016 doi:10.20944/preprints201608.0078.v1

9 of 56

topological space that arises from the algebraic dualization of the homology construction). Souriau
introduced the moment map in 1965 in a lecture notes at Marseille university and published it in
1966. Souriau gave the formal definition and its name based on its physical interpretation in 1967.
Souriau then studied its properties of equivariance, and formulated the coadjoint orbit theorem in
his book in 1970. But in its book, Souriau also observed in chapter IV that Gibbs equilibrium states
are not covariant by dynamical groups (Galileo or Poincaré groups) and then he developed a
covariant model that he called “Lie Group Thermodynamics”, where equilibriums are indexed by a
“geometric (planck) temperature”, given by a vector £ that lies in the Lie algebra of the dynamical

group. For Souriau, all the details of classical mechanics appear as geometric necessities (e.g., mass is
the measure of the symplectic cohomology of the action of a Galileo group). Based on this new
covariant model of thermodynamic Gibbs equilibrium, Souriau has formulated statistical mechanics
and thermodynamics in the framework of Symplectic Geometry by use of symplectic moments and
distribution-tensor concepts, giving a geometric status for temperature, heat and entropy.

There is a controversy about the name “momentum map” or “moment map”. Smale referred to
this map as the “angular momentum”, while Souriau used the French word “moment”. Cushman
and Duistermaat have suggested that the proper English translation of Souriau's French word was
“momentum” which fit better with standard usage in mechanics. On the other hand, Guillemin and
Sternberg have validated the name given by Souriau and have used “moment” in English. In this
paper, we will see that name “moment” given by Souriau was the most appropriate word. In his
Chapter IV of his book, studying statistical mechanics, Souriau has geniously observed that
moments of inertia in Mechanics are equivalent to moments in Probability in his new geometric
model of Statistical Physics . We will see that in Souriau Lie Group Thermodynamics model, these
statistical moments will be given by the Energy and the Heat defined geometrically by Souriau, and
will be associated with “moment map” in dual lie algebra.

This work has been extended by Claude Vallée [192, 193] and Gery de Saxcé [163, 164, 165, 166].
More recently, M. Kapranov has also given a thermodynamical interpretation of the moment map
for toric varieties [107] and Pavlov, Thermodynamics from the differential geometry standpoint
[152].

The conservation of the moment of a Hamiltonian action was called by Souriau the “Symplectic
or Geometric Noether theorem”. Considering phases space as symplectic manifold, cotangent fiber of
configuration space with canonical symplectic form, if Hamiltonian has Lie algebra, moment map is
constant along system integral curves. Noether theorem is obtained by considering independently
each component of moment map.

We will enlighten Souriau’s Model with Koszul Information Geometry [113, 114, 115, 116, 117,
118, 119, 120], recently studied in [13,14,15], where we have shown that this last Geometry is
founded on the notion of Koszul-Vinberg Characteristic function y(x)= j e"dE, Vxe Q where Q

&
is a convex cone and Q"the dual cone with respect to Cartan-Killing inner product
< x, y> =-B(x,6(y)) invariant by automorphisms of €, with B(.,.) the Killing form and g(.) the Cartan

involution:

l//n(x+lu)=l//Q(x)—/1<x*,u>+/§<K(x)u,u>+... 9

with " =9 40— logy, (x) and K(x)= d;(bz(x) (10)
x X

This characteristic function is at the cornerstone of modern concept of Information Geometry,
defining Koszul density by Solution of Maximum Koszul-Shannon Entropy [127]:

Mpax - J:pé(é") log pf(f).df such that[pé(.f)df =land [g’".pé(é’)df =£ 11)
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(7))
- S Ny (V)] __
o g O(f) == 5= where ®(B)=~logyo(F)

o

valB)=[e"9ds . S ==[p&)logp,(£)df and f=07(§)

Pse(g) =

(12)

.

Q
S@=(&.B)-o(B)
This last relation is a Legendre transform between the logarithm of characteristic function and the
Entropy:

log p, (&) =~(&. B)+ ®(B)

_ (13)
5E)=[ py(&)1og p (&) = ~Eliog p(&)]

&)= (ElEL B)-w(B)= (&, B)-@(p)

The inversion ©'(£) is given by the Legendre transform based on the property that the

Koszul-Shannon Entropy is given by the Legendre transform of minus the logarithm of the
characteristic function:

S =<,3,£> —~®(B) with ®(f)=—log [¢ */df VBeQ and V& e Q' (14)

We can observe the fundamental property that E[S(&)]=S(E[E]) , £€ Q°, and also as observed

by Maurice Fréchet that “distinguished functions” (densities with estimator reaching the
Fréchet-Darmois bound) are solutions of the Alexis Clairaut Equation introduced by Clairaut in

1734 [74]:
s@=(e"&.&)-alo"@)| véielop) pe} (1)
(55) p=0u — ypu)

c’est-a-dire une équation de Clairaut. La solution 4’ = constante réduirait f(x, 6),
d’apres (48) a une fonction indépendante de #, cas o1 le probléme n’aurait plus
de sens. u est donc donné par la solution singuliére de (55), qui est unique et
s'obtient en éliminant s entre u = 6 s — w(s) et § = y’'(s) ou encore entre

Figure 4. Clairaut-Legendre Transformation introduced by Maurice Fréchet in his 1943 paper

Details of Fréchet elaboration for this Clairaut(-Legendre) equation for “distinguished function” is
given in Appendix A, and other elements are available on Fréchet’s papers [73, 74, 75, 76].

In this structure, the Fisher metric /(x) makes appear naturally a Koszul hessian geometry
[167, 168], if we observe that
log p;(£)=~(£. B)+ ®(B)

_ (16)

S@)==[ (&) 1o p,(§)4¢ = ~Eliog p,(©)]
S(&)=(EE) B)-0(B)=(&.8)-2(B)
Then we can recover the relation with Fisher metric:

_ [ eep, @] [ B reB)]| *ep
I(ﬁ)_ E|: aﬁz :|_ E|: 8,[32 - aﬂz
£_0(p) 17)

B

0 0 r . A\ )

16)= E[ T } = (e~ &l -&) |-l ] mleF =rar)
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-1
with Crouzeix relation established in 1977 [59, 88], azﬁ :{azs} giving the dual metric, in
op’ | 9&?
dual space, where Entropy § and (minus) logarithm of characteristic function, ® , are dual
potential functions.
The 1st Metric of Information Geometry [55, 56], the Fisher Metric is given by the hessian of the
characteristic function logarithm:

2 2 2

18)=-£° IOgiﬂ(é:) __9%p) 2 logt{g(ﬂ) (18)

9B 9B 9B

ds; =dp"I(B)ap = g,dBdp, with g, =[I(B)], (19)

The 2nd Metric of Information Geometry is given by hessian of the Shannon Entropy:

@) _[B) | with  sg)=(2 )- 2

= | o with  5(&)= (& B)-®(B) (20)

2¢(E 2¢¢ B

ds? =d"| 05 gz oS p agag wim h, = 25E) 1)
o8 [°74 & |,

Both metrics will provide the same distance:

dsz, =ds; (22)

This Information geometry has been intensively studied for structured matrices [20,22,23,24,25, 34,
35, 36, 53, 54, 58, 104, 105, 106, 131, 186] and in statistics [89] and is linked to seminal work of Siegel
[169] on symmetric bounded domains.

We will see hereafter that Souriau has generalized this Fisher metric for Lie Group
Thermodynamics, and interpreted the Fisher Metric as a Geometric Heat Capacity.

We can illustrate Information Geometry for multivariate Gaussian law [201] with computation

of Fisher Metric:
1 Loy R 2=
(EV=—— 2 (23)
Pe(s) (27)""? det(R)""?

If we develop:
S D O [ ot SO AP S e T p-1
Se-m) R m)—z[sz m" Rz —z" R m+m" R m) 24)

=lZTR_lz -m'R'z +lmTR_1m
2 2
We can write the density as a Gibbs density:
Tp1_, Ll 101
1 7[7m R z+52 R z} _ le’<‘f’ﬂ>
lmT “'m Z
(2”);«/2 det(R)l/zez R (25)

pg(é:) =

2
We can then rewrite density with canonical variables:

&= | and p= _IR_lm = % | with (& ,B>=aTz+zTHz=TrzaT+HTzzT]
zz" —R™ H ’
p: (&)= 1 6P = leﬁ’ﬂ> with log(Z) = nlog(27r)+llog det(R)+lmTR'lm
¢ Ie—<§,ﬂ>.d§ Z 2 2

o
z | Elz] m a -R'm . . o (26)

ég:LZT}g{E[ZZTﬂ {RermT}’ﬂ{H} =[ %R’l with (¢,f)=Trlza” + H'z"]

R= E[(Z —m)(z~ m)T]: E[ZZT —mz' —zm" + mmT]Z E[zzT]—mmT

The 1t Potential function (Free Energy / logarithm of characteristic function) is given by:

Va(B)=[e¥.dg and ®(B)=-logy,(B)= %[_ Tl 0" )+ togl(2)" det 1] - nlog(27) @)

Q
We verify the relation between 1t Potential function and moment:
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00(p) _dklogya B, L _¢
5 - o —ié je@,m_df.dé—ié.pf(f)df =¢
Q (28)
ID(f)
oD(f) _| 9a |_ m _ 2
op 0B | | R+mm"
oH
The 2nd Potential function (Shannon Entropy) is given as Legendre Transform of 1+t one:
(& i 02B) g g 35E)
S(&) = . h S8 ang 29 =
©=(£.5)-0(p) with = 5 =4 md s 09)
. B B
S( )= _é[ J.ei<§’ﬁ>.d§ log J.ei<§’ﬂ>.d(f dé = _é[pg(é‘:) Ingg(‘f)d‘f
S@&) =] p:(&)log p,(£)dé = %[log(Z)" det[7 ' |+ nlog(27e)| = %[log det[R]+ nlog(27e)] (30)

This remark was made by Jean-Souriau in his book as soon as 1969. He has observed tht if we

take vector with tensor components £ = [ ], components of & will provide moments of 1+t and

z®z
2nd order of the density of probability p; (&) He used this change of variable z'=H'"?z+H™"a, to

compute the logarithm of the characteristic function ®(f):

§ Exemple : (loi normale) :

: x

% Prenons le cas V= R", 1 = mesure de Lebesgue, Wix) = '
§ . x & x

;;;; un ¢élément Z du dual de E peut se définir par la formule

Z

b Z{P(x)) = d.x + 1 X.H.x

iﬁ [¢ e R"; H = matrice symétrique]. On wvérifie qué la convergence de 1'inté-
i%: grale Iy a lieu si la matrice*H est positive (') ; dans ce cas la loi de Gibbs

§'s‘appc11c loi normale de Gauss ; on calcule facilement [ en faisant le chan-
i, gement de variable x* = H' x + H~'? g (%) ; il vient )

| z=3%[a.H '.a — log(dét (H)) + nlog (2 =)]

est défini par les moments du premier et du second ordre de la loi (16.196) ;
le calcul mentre que le moment du premier ordre est égal &4 — H ™ '.a
i et que les composantes du tenseur variance (16.196) sont égales aux
l&éments de la matrice H ~* ; le moment du second ordre s’en déduit immgé-

%?’ alors la convergence de J; a lieu également ; on peut donc calculer M, qui
-

I s =5 log (2 ne) — -lilog (dét (F))

(") Voir Calcul linéaire, tome II
(*) C'est-di-dire en recherchant Iimage de la loi par I'application x +» x*.

Figure 5. Introduction of Potential Function for Multivariate Gaussian law

We can finally compute the metric from the matrix g :

ds* =Y g,d0.do, :meR‘ldm+%Tr[(R‘ldR)2] (31)
i
and from classical expression of the Euler-Lagrange equation:
n . & .. dg, Jdg, Og,
S 0,0+ 3 T,66,=0 . k=l..n with I =+|"0,%x, % (32)
i=1 iJ=l Y "2| 96, aﬂj 206,

That is explicitely given by:
R+mm" —RR'R=0 (33)
ii—RR i =0
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We cannot integrate this Euler-Lagrange Equation. We will see that Lie group Theory will provide
new reduced equation, Euler-Poincaré equation, using Souriau theorem.

We can apply this Koszul geometry framework for cones of Symmetric Positive Definite
Matrices. Let the inner product <77,§>:Tr(777§), vn,&e Sym(n) given by Cartan-Killing form, Q be

the set of symmetric positive definite matrices is an open convex cone and is self-dual Q" =Q.
(n.&)=Trln"¢), vn.&e Symn)

n+l (34)
va(B) = [ag = det(B) 2 o (1)
£ 00B) _dClogva(B) _n+l g
op p 2
R R ) R @

From the Cartan Inner Product, we can generate logarithm of the Koszul Characteristic
Function, and its Legendre Transform to define Koszul Entropy, Koszul Density and Koszul Metric,
as explained in the following Figure:

(-, )inner product from Cartan - Killing Form:

(&.8)=-B¢.6(p)) with B(f,@(ﬁ))iTC(AdéAda(ﬂ))

5= (s‘;ﬁ) -0(p) Legendre Transform  ®(3) =—logw, ()
S =-[p;©Ologp;()d; (U Vit yo(f)= [P
(o7 d.¢) 2
e i_ep=220) _95()
PO g £ p=5¢

!
1) =-£ L8 2:6) ds; = 2. 8,4PAp,
6,3' i dS; = ds;

) . [0 L |05
I(ﬁ)=a§)ﬂ(z with g‘}.—[ o5 l with A, |: PE: ij

ds} =Y hdédé,
i

Figure 6. Generation of Koszul elements from Cartan Inner Product.

We give reference to the book of M. Deza that give a survey about distance and metric space
[63].

3. Lie Group Thermodynamics model of Jean-Marie Souriau

Souriau has defined Gibbs canonical ensemble on symplectic manifold M for a Lie group
action on M. In classical statistical mechanics, a state is given by the solution of Liouville equation on
the phase space, the partition function. As symplectic manifolds have a completely continuous
measure, invariant by diffeomorphisms, the Liouville measure A, all statistical states will be the
product of Liouville measure by the scalar function given by the generalized partition function
e®PHPVE) defined by the energy U (defined in dual of Lie Algebra of this dynamical group) and

the geometric temperature 3, where @ is a normalizing constant such the mass of probability is
equal to 1, ®(f)=-—log Je‘w Vg [43] . Jean-Marie Souriau then generalizes the Gibbs
M

equilibrium state to all symplectic manifolds that have a dynamical group. To ensure that all
integrals, that will be defined, could converge, the canonical Gibbs ensemble is the largest open
proper subset (in Lie algebra) where these integrals are convergent. This canonical Gibbs ensemble is
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convex. The derivative of @, o= @ (thermodynamic heat) is equal to the mean value of the energy

U . The minus derivative of this generalized heatQ, g = _99 s symmetric and positive (this is a

geometric heat capacity). Entropy s is then defined by Legendre transform of ®, s=(f,0)-®. If

this approach is applied for the group of time translation, this is the classical thermodynamic theory.
But Souriau has observed that if we apply this theory for non-commutative group (Galileo or
Poincaré groups), the symmetry has been broken. Classical Gibbs equilibrium states are no longer
invariant by this group. This symmetry breaking provides new equations, discovered by Souriau.

We can read in his paper this prophetical sentence “Peut-étre cette thermodynamique des groups de
Lie a-t-elle un intérét mathématique”. He explains that for dynamic Galileo group with only one axe of
rotation, this thermodynamic theory is the theory of centrifuge where the temperature vector
dimension is equal to 2 (sub-group of invariance of size 2), used to make “uranium 235” and
“ribonucleic acid”. The physical meaning of these 2 dimensions for vector-valued temperature are
“thermic conduction” and “viscosity”. Souriau said that the model unifies “heat conduction” and
“viscosity” (Fourier and Navier equations) in the same theory of irreversible process. Souriau has
applied this theory in details for relativistic ideal gas with Poincaré group for dynamical group.

Before introducing Souria Model of Lie Group Thermodynamics, we will first remind classical

notation of Lie Group Theory:

e The coadjoint representation of G is the contragredient of the adjoint representation. It
associates to each ge G the linear isomorphism Ad e GL(g ), which satisfies, for each

fegand Xeg:
<Ad; &), X> - <§, Ad (X)> (36)
e The adjoint representation of the Lie algebra g is the linear representation of g into itself
which associates, to each X e g, the linear map ad, € gl(g).ad Tangent application of Ad
at neutral element ¢ of G:
ad =T,4d :T,G — End(T,G)
X.YeT,Grad,(Y)=[X,Y]

e The coadjoint representation of the Lie algebra g is the contragredient of the adjoint

(37)

representation. It associates, to each X e g, the linear map ad, € g/(g") which satisfies, for each

fegand Xeg:

(ad”(£),Y)= (&, 4d_(Y)) (38)
We can illustrate for group of matrices for G =GL, (K) with K =R or C.
T.G=M,/K), XeM,(K),geG Ad,(X)=gXg" 39)
X,YeM, (K) ad,(Y)=(T.Ad),(Y)=XY —YX =[X,Y] (40)

Then, the curve from e=1,=c(0) tangent to X =c(l) is given by c¢(r)=exp(tX)
and transform by Ad: y(t) = Ad exp(tX)

ad (V) = (T.Ad) , (Y) = % )Y

= iexp(z)()yexp(t)()*1 =XY-YX (41)
= dt 1=0
For each temperature 3, element of the Lie algebra g, Souriau has introduced a tensor © 57

equal to the sum of the cocycle O and the Heat coboundary (with [.,.] Lie bracket):
9/3(21’22 ): e(ZnZz )+ <Qaadz, (Z,) > with adzl (Z,)= [ZnZz] (42)

This tensor @ ; has the following properties:
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e OX.,Y)= (©(X),Y)where the map © is the one-cocycle of the Lie algebra gwith values in g,
with ©(X)=T.6(X(e)) where 6 the one-cocycle of the Lie group G. ©(X,Y) is constant on M

and the map ©(X,Y):gxg— R is a skew-symmetric bilinear form, and is called the Symplectic
Cocycle of Lie algebra g associated to the moment map J, with the following properties:

O(X,Y)=J ter] — 1/ x»Jy t with {,.}Poisson Bracketand J the Moment Map (43)
odx.r}z)+6(r.z} x)+6(z,x]1)=0 (44)
where J  linear application from g to differential function on M : 9—C"(M.R)

X—>J,

and the associated differentiable application .J, called moment(um) map:
J:M —g  suchthatJ,(x)=(J(x),X),Xeg
x> J(x)

(45)

If instead of J we take the following moment map: J'(x)=J(x)+Q0 , xe M
where Qe g’ is constant, the symplectic cocycle @ is replaced by 6'(g)=6(g)+0- Ad 0
where 0'-0=0—4d,Q is one-coboundary of G with values in g . We have also properties
0(g,g,) = Ad;‘9(gz)+9(g1) and 6(e)=0.
* peKer®, suchthat ©,(8,8)=0 , VBeg (46)
e The following symmetric tensor g 5 defined on all values of g4 5()= [ﬂ,] is positive definite:
2,(8.2.118.2.)=6,(2,.[8.2,) (47)
2,(8.212,)=0,(2,.2,) , VZ,eg, VZ, € Im(ad,()) (48)
2,(2,,2,)20 , VZ,,Z, € Im(ad 4()) (49)
where the linear map ad, € gl(g) is the adjoint representation of the Lie algebra g defined by
X,Yeg(=T.G)~ ad,(Y)=[X,Y], and the co-adjoint representation of the Lie algebra g the

linear map ad € gl(g" ) which satisfies, for each £eg and X,Yeg: <ad} (f),Y> =(&,—ad  (Y))

These equations are universal, because they are not dependent of the symplectic manifold but only
of the dynamical group G, the symplectic cocycle ©, the temperature S and the heat (. Souriau
called this model “Lie Groups Thermodynamics” .

We will give the main theorem of Souriau for this “Lie Group Thermodynamics”:

Theorem 1 (Souriau Theorem of Lie Group Thermodynamics). Let Q be the largest open proper
subset of g, Lie algebra of G, such that J‘efw’u(f»dﬂ and J.f.e_w’mf»dﬂ are convergent integrals, this set
M M

Q is convex and is invariant under every transformation Adg(_), where g Adg(_) is the adjoint
representation of G, such that Ad, =T,i, with i :hw> ghg™ . Let a: Gxg —g a unique affine action a

such that linear part is coadjoint representation of G, that is the contragradient of the adjoint representation. It
associates to each ge G the linear isomorphism Ad e GL(Q'), satisfying, for each:

feg and Xeg:(4d)(&).X)=(£.4d . (X)).

Then, the fundamental equations of Lie Group Thermodynamics are:

* [B-o4d(p) (50)
¢« dod-0g)s (51)
e s (52)
* 0-a(g.0)=4d (0)+6(g) (53)

For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the equivariance
of the moment map with respect to an affine action of the group on the dual of its Lie algebra has
been studied by C.M. Marle & P. Libermann [128] and Lichnerowics [129, 130]:
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Theorem 2 (Marle Theorem on cocycles). Let G be a connected and simply connected Lie group,
R:G — GL(E) be a linear representation of G in a finite-dimensional vector space E, and r:g— gl(E) be
the associated linear representation of its Lie algebra g. For any one-cocycle ©:g — E of the Lie algebra g for
the linear representation v, there exists a unique one-cocycle 6:G — E of the Lie group G for the linear
representation R such that ©(X)=T.0(X (e)), which has © as associated Lie algebra one-cocycle. The Lie
group one-cocycle @ is a Lie group one-coboundary if and only if the Lie algebra one-cocycle © is a Lie
algebra one-coboundary.

Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form © on
g=T7,G can be extended into a closed differential two-form on G, since the identity on © means

that its exterior differential d© vanishes. In other words, @ is a 2-cocycle for the restriction of the
de Rham cohomology of G to left invariant differential forms. In the framework of Lie Group
Action on a Symplectic Manifold, equivariance of moment could be studied to prove that there is a
unique action a(.,.) of the Lie group G on the dual g  of its Lie algebra for which the moment map
J is equivariant, that means for each xe M :
(@, (0)=a(g,J(x)) = 4d}(J (x))+6(2) (54)
where ®:GxM — M is an action of Lie Group G on differentiable manifold M, the
fundamental field associated to an element X of Lie algebra g of group G is the vectors field

X, onM
d
XM (x) = Eq)exp(ftz\’) (x) (55)

t=0

with @ (cI)gz (x)):q)glg2 (x) and @,(x)=x. ® is hamiltonian on a Symplectic Manifold M, if
® is symplectic and if for all Xeg , the fundamental field X, is globally Hamiltonian. The

cohomology class of the symplectic cocycle § only depends on the Hamiltonian action @, and not
on J.

In Appendix B, we observe that Souriau Lie Group Thermodynamics is compatible with Balian
Gauge theory of thermodynamics [8], that is obtained by symplectization in dimension 2n+2 of
contact manifold in dimension 2n+1. All elements of the Souriau geometric temperature vector are
multiply by the same gauge parameter.

4. Souriau Affine representation of Lie Group and Lie Algebra

This affine representation of Lie group/algebra used by Souriau has been intensively studied by
C.M. Marle [128,132, 135, 136].

4.1. Affine representations and cocycles

Souriau Model of Lie Group Thermodynamics is linked with Affine representation of Lie Group and
Lie Algebra. We will give in the following main elements of this affine representation.

Let G be a Lie group and E a finite-dimensional vector space. Amap 4:G — Aff(E)always can
be written as:
A(g)(x)=R(g)(x)+6(g) with ge G,xe E (56)
where the maps R:G — GL(E) and 6:G — E are determined by A. The map A is an affine
representation of G in E.

The map 6:G — E is a one-cocycle of G with values in E, for the linear representation R; it
means that 6 is a smooth map which satisfies, for all
g, he G: 0(gh)=R(g)(O(h))+0(g) (57)
The linear representation R is called the linear part of the affine representation A, and @ is called
the one-cocycle of G associated to the affine representation A. A one-coboundary of G with
values in E, for the linear representation R, isamap 6:G — E which can be expressed as:
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0(g)=R(g)(c)—c , g€ G where cis a fixed element in E (58)
and then there exist an element ce E such that, forall ge Gand xe€ E:
A(g)(x)=R(g)x+c)—c (59)

Let g be a Lie algebra and E a finite-dimensional vector space. A linear map a:g— aff (E)
always can be written as:
a(X)(x)=r(X)(x)+0O(X) with Xeg,xe E (60)
where the linear maps r:g— gl(£) and ©:g— F are determined by a. The map a is an affine
representation of G in E . The linear map ©:g— E is a one-cocycle of G with values in E, for the
linear representation 7; it means that © satisfies, forall X ,Yeg:
o(x,Y)=r(0)(O1) - H(O(X)) (61)
© is called the one-cocycle of g associated to the affine representation a. A one-coboundary of
gwith values in E, for the linear representation r, is a linear map ©:g— E which can be expressed
as: O(X)=r(X)(c) , Xeg where cis a fixed element in E., and then there exist an element ce F

such that, forall Xegand xe E:
a(X)(x) = r(X)(x+c¢)

Let 4:G — Aff(E) be an affine representation of a Lie group g in a finite-dimensional vector
space E, and g be the Lie algebra of G. Let R:G — GL(E)and 0:G — E be, respectively, the
linear part and the associated cocycle of the affine representation A. Let a:g — aff (E) be the affine
representation of the Lie algebra g associated to the affine representation 4:G — Aff(E) of the Lie
group G . The linear part of a is the linear representation r:g— g/(E)associated to the linear

representation R:G — GL(E), and the associated cocycle ©:g— E is related to the one-cocycle

0:G—>E by: ©(X)=T0(X(e)), Xeg (62)

This is deduced from:

dA(exp(X))x)| _ d(R(exp(tX))(x) + B(exp(tX))| B 63
7 | = o B = a(X)(x) = r(X)(x)+ T.0(X) (63)

Let G be a connected and simply connected Lie group, R:G — GL(E) be a linear
representation of G in a finite-dimensional vector space E, and r:g— gl/(£)be the associated
linear representation of its Lie algebra g. For any one-cocycle ©:g— E of the Lie algebra g for the
linear representation r, there exists a unique one-cocycle 8:G — E of the Lie group G for the
linear representation R such that:

O(X) =7,6(X(e)) (64)

in other words, which has © as associated Lie algebra one-cocycle. The Lie group one-cocycle 6 is

a Lie group one-coboundary if and only if the Lie algrebra one-cocycle ® is a Lie algebra

one-coboundary.

do(gexpX))| _ d(0(g) + R(2)(O(exp(tX)))
a |, dt -

which prove that if it exists, the Lie group one-cocycle 6 suchthat 776 =0 is unique.

= 7,8(TL, (X)) = R(2)(©(x)) (65)

4.2. Souriau Moment Map and Cocycles

Souriau has introduced first the Moment map in his book. We will give the link with previous
cocycles of affine representation.

There exist J, linear application from g to differential function on M :
g—>C"(M,R)

X->J,

We can then associate a differentiable application J, called moment(um) map for the Hamiltonian
Lie group action ®:

(66)
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J:M—>g
x> J(x) such that J, (x) =(J(x),X), X e g

Let J moment map, for each (X,Y)egxg, we associate a smooth function ©(X,Y):M — R

(67)

defined by:

O(X,Y)=Jyy—{/ . Jy} with  {,}:Poisson Bracket (68)
It is a Casimir of the Poisson algebra C~(M,R), that satisfy:

o(x.Yl2)+o(r,z] x)+6(z,x]v)=0 (69)

When the Poisson Manifold is a connected symplectic manifold, the function ©(X,Y) is
constant on M and the map:
O(x,Y):gxg—R (70)
is a skew-symmetric bilinear form, and is called the Symplectic Cocycle of Lie algebra g
associated to the moment map J.
Let ©:g—g be the map such that for all:

X,Yeg: (6(X),Y)=06(X,Y) (71)
The map © is therefore the one-cocycle of the Lie algebra g with values in g for the coadjoint
representation X > ad, of g associated to the affine action of g on its dual:

ag(X)(§) =ad " (§)+O(X) , Xeg.leg (72)
Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form © on

g=7,G can be extended into a closed differential two-form on G, since the identity on © means

that its exterior differential d® vanishes. In other words, © is a 2-cocycle for the restriction of the
de Rham cohomology of G to left (or right) invariant differential forms.

4.3. Equivariance of Souriau Moment Map

There exist a unique affine action a such that linear part is coadjoint representation:
a:Gxg —g

a(g,&) = Ad" . +6(g)
with < Ad;l EX > = <§, Ad X > and that induce equivariance of moment J.

(73)

4.4. Action of Lie Group on a Symplectic Manifold

Let ®:GXxM — M be an action of Lie Group G on differentiable manifold M, the fundamental
field associated to an element X of Lie algebra g of group G is the vectors field X, on M:

XM<x>=jt%_,m(xﬁl_OWith ®, (@, ()=, (1) and (1) =x 74)
® is hamiltonian on a Symplectic Manifold M, if @& is symplectic and if for all Xeg , the
fundamental field X, is globally Hamiltonian.
There is a unique action a of the Lie group G on the dual g of its Lie algebra for which the
moment map J is equivariant, that means satisfies for each xe M
(@, ()= a(g.J(x) = 4d (J(x)) + 6(g) (75)
0:G —g is called Cocycle associated to the differential 7.6 of 1-cocyle § associated to J
at neutral element e:
(TO(X),Y)=0(X,Y)=Jpy 1~y } (76)
If instead of J we take the moment map J'(x)=J(x)+u , xe M, where ye g’ is constant,
the symplectic cocycle 8 is replaced by:
0'(g)=0(g)+u—Ad, 77)

where 9'-6= - Ad; 4 is one-coboundary of G with values in g.
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Therefore the cohomology class of the symplectic cocycle § only depends on the Hamiltonian
action @, not on the choice of its moment map .J. We have also:
0'(X,Y)=0(X,Y)+{(u[X,Y) (78)

This property is used by Jean-Marie Souriau to offer a very nice cohomological interpretation of
the total mass of a classical (nonrelativistic) isolated mechanical system. He proves that the space of
all possible motions of the system is a symplectic manifold on which the Galilean group acts by a
Hamiltonian action. The dimension of the symplectic cohomology space of the Galilean group (the
quotient of the space of symplectic one-cocycles by the space of symplectic one-coboundaries) is
equal to 1. The cohomology class of the symplectic cocycle associated to a moment map of the action
of the Galilean group on the space of motions of the system is interpreted as the total mass of the
system.

For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the equivariance
of the moment map with respect to an affine action of the group on the dual of its Lie algebra has
been proved by C.M. Marle. C.M. Marle has also developed the notion of symplectic cocycle and has
proved that given a Lie algebra symplectic cocycle, there exists on the associated connected and
simply connected Lie group a unique corresponding Lie group symplectic cocycle. C.M. Marle has
also proved that there exists a two-parameter family of deformations of these actions (the
Hamiltonian actions of a Lie group on its cotangent bundle obtained by lifting the actions of the
group on itself by translations) into a pair of mutually symplectically orthogonal Hamiltonian
actions whose moment maps are equivariant with respect to an affine action involving any given Lie
group symplectic cocycle. C.M. Marle has also explained why a reduction occurs for Euler-Poncaré
equation mainly when the Hamiltonian can be expressed as the moment map composed with a
smooth function defined on the dual of the Lie algebra; the Euler-Poincaré equation is then
equivalent to the Hamilton equation written on the dual of the Lie algebra.

4.5. Dual spaces of finite-dimensional Lie Algebras

Dual spaces of finite-dimensional Lie algebras. Let g be a finite-dimensional Lie algebra, and
g its dual space. The Lie algebra gcan be considered as the dual of g, that means as the space of
linear functions on g, and the bracket of the Lie algebra g is a composition law on this space of
linear functions. This composition law can be extended to the space C~(g",R) by setting:

U8} = (x[df(x).dg(v)]) . fandge C7(@.R), xeg (79)
If we apply this formula for Souriau Lie Group Thermodynamics, and for Entropy s(Q)
depending of Geometric heat Q:

{51,5:10) =(0.lds(0).d5,(Q))) , s,ands,€ €7@, R), Qeg (80)
This bracket on C~(g",R) defines a Poisson structure on g, called its canonical Poisson
structure. It implicitly appears in the works of Sophus Lie, and was rediscovered by Alexander

Kirillov [108], Bertram Kostant and Jean-Marie Souriau.
The above defined canonical Poisson structure on g can be modified by means of a symplectic

cocycle O by defining the new bracket:

{7, glo () = (2[4 (). dg(0)]) - B(df (x), dg () (81)

with © a symplectic cocycle of the Lie algebra g is a skew-symmetric bilinear map

0 : gxg — R which satisfies:

o(x,v]lz)+o(r,zl x)+6(z,x]v)=0 (82)
This Poisson structure is called the modified canonical Poisson structure by means of the

symplectic cocycle ©®. The symplectic leaves of g equipped with this Poisson structure are the

orbits of an affine action whose linear part is the coadjoint action, with an additional term

determined by ©.
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5. Souriau-Fisher Metric of Lie Group Thermodynamics

If we differentiate this relation of Souriau theorem Q(Adg ( ﬂ)): Ad; (0)+ H(g), this relation occurs:

9 -4 $1)=002. 8D+ (0. . (8.1) =8, 2, 15.) )
—g—%([Zl,ﬂ],Zz-FC:)(ZI,[ﬂ,ZZ ])+<Q, Ad.zl ([ﬂ,Z2 ])>=(:jp,(zlj[ﬂ,z2 ]) (84)
=50 =, 1.2)18.2.) )

We observe that the Fisher Metric () = _g_% is exactly the Souriau Metric defined through

Symplectic cocycle:

1(B)=0,(2.[8.2,)=¢,08.218.2,)) (86)

2
The Fisher Metric (g)=- J (I>£ﬂ) = _3_1% has been considered by Souriau as a generalization
B

of “Heat Capacity”. Souriau called it K the “Geometric Capacity”.

Figure 7. Fourier heat equation in seminal manuscript of Joseph Fourier

-1
For p- 1 k= _9Q = _B_Q(M) =kT? g_Q linking the geometric capacity to calorific
T

kT o  or\ dT
capacity, then Fisher metric can be introduced in Fourier heat equation:
aT K . aQ aﬂ_l 2 1 —1
——=——AT with ===C.D =-"—=«|f*/k)I, A (87)
at C.D w1 aT at [(ﬁ ) Fisher (ﬂ)r ﬂ

Souriau has built a thermometer (Oeouoc) device principle that could measure the Geometric
Temperature using “Relative Ideal Gas Thermometer” based on a theory of Dynamical Group
Thermometry and has also recovered the (Geometric) Laplace barometric law

We can also observe that Q is related to the mean, and K to the variance of U:

K=1(f)= —3—% =var(U) = [U(£)* py (f)dw—[ [u©.p, (f)dw] (88)
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We observe that the entropy s is unchanged, and @ is changed but with linear dependence to f,

with consequence that Fisher Souriau metric is invariant:

slolad, (8))=sB) and  1(4d,(B))= (0 ;Z(Zg ")) 3;‘12’ —1(B) (89)

General definition of Heat Capacity has also been introduced by Pierre Duhem .

G

TEMPERATURE . HEAT
In Lie Algebra In Dual Lie Algebra
O Q

o g

Gibbs canonical
ensemble

Ad(f) 4d(0)+6(g)
A~ 2
5

5(Q)=(5.0)-2(B)

ENTROPY IS INVARIANT
(Could be is defintion)
R R
LOG OF CHARACTERISIC FUNCTION ENTROPY

Figure 8. Global Souriau scheme of Lie Group Thermodynamics

G
..... B.
(fg) ——————— YM )
2 A ¥
T Ad
Ad-o| C o7
o Q| .~ g

* Q0 =04d ()= Ad.(Q)+6(g)

Figure 9. broken of symmetric on geometric heat Q due to adjoint action of the Group on
temperature § as element of the Lie algebra

We have deduced from this Souriau Model, by reduction, the Euler-Poincaré equation
describing geodesic:
0 s(Q)=(B,0)-2(p)
—= =adyQ and .
i SO0 ad  aO) W)

00 B

Back to Koszul model of Information Geometry, we can then deduce Euler-Poincaré equation for
statistical models

(90)
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: @' (x") = (x,x") - 0(x)
ey and | o) 2001 1)
dt x=———2eQ, x =—2eQ
ox ox

6. Souriau-Euler-Poincaré equations of Lie Group Thermodynamics

When a Lie algebra acts locally transitively on the configuration space of a Lagrangian
mechanical system, Henri Poincaré proved that the Euler-Lagrange equations are equivalent to a
new system of differential equations defined on the product of the configuration space with the Lie
algebra. C.M. Marle has written the Euler-Poincaré equations [134], under an intrinsic form, without
any reference to a particular system of local coordinates, proving that they can be conveniently
expressed in terms of the Legendre and moment maps of the lift to the cotangent bundle of the Lie
algebra action on the configuration space. The Lagrangian is a smooth real valued function L
defined on the tangent bundle 7M . To each parameterized continuous, piecewise smooth curve
7:lt,,t,]— M, defined on a closed interval [z, ], with values in M , one associates the value at y

of the action integral: I(y)= JL L(di/igt)jdt (92)

The partial differential of the function L:Mxg—R with respect to its second variable d,L,
which plays an important part in the Euler-Poincaré equation, can be expressed in terms of the
moment and Legendre maps: d,L = Py ° @ olog with J = Py ° ¢ (=d,L=JoLog) the moment

map, p.:Mxg —g the canonical projection on the second factor, L:7M — 7" M the Legendre
g

transform, with:

9:Mxg—>TM | ¢(x,X)=X,(x) and ¢ :T'M - Mxg' /¢'(&)=(r,(£),J(&)) (93)
The Euler-Poincaré equation can therefore be written under the form:

[;’t _ ad;(,)j(J LoglHOF )= 2 d L.V () with 222 = p(y0)7 (1) O
With m(&)=(EL7(E)-LIL(&) . EeT'M | LiTM ST'M , H:T'M >R (95)

Following the remark made by Poincaré at the end of his note, the most interesting case is when
the map L:Mxg— R only depends on its second variable X eg. The Euler-Poincaré equation
becomes:

(jt—ad;mj(dL(V(t)))zo (%)

We can use analogy of structure when the convex Gibbs ensemble is homogeneous [185]. We
can then apply Euler-Poincaré equation for Lie Group Thermodynamics. Considering Clairaut

equation: s(0)=(3,0) - (ﬂ) =(07(0).0)-0(©"(0)) 97)
with 0 =@Q(p) —?e g » B=0"(0Q)eg, a Souriau-Euler-Poincaré equation can be

elaborated for Souriau Lie Group Thermodynamics:

L. ©98)
a = 0
or

d *

Z(4d’0)=0 (99)
dt ( ¢ 0)

An associated equation on Entropy is: s _ <dﬁ > < B.ad Q> _ 2= thatreduces to
dt\ dt /

o _ <dﬂ Q> do (100)
dt \dt dr

due to (¢,ad, X)=~(ad} £ X )= (B,ad}0) = (0.ad . ) =


http://dx.doi.org/10.20944/preprints201608.0078.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 August 2016 doi:10.20944/preprints201608.0078.v1

23 of 56

With these new equation of thermodynamics 40 _ ad,Q and i( Ad;Q)= 0, we can observe that
dt dt

the new important notion is related to co-adjoint orbits, that are associated to a Symplectic manifold
by Souriau or KKS 2-form.

7. Poincaré-Cartan Integral Invariant and Variational Principle of Souriau Lie Groups
Thermodynamics

We will define the Poincaré-Cartan Integral Invariant for Lie Group Thermodynamics.
Classically in mechanics, the Pfaffian form w= p.dg— H.dt is related to Poincaré-Cartan integral
invariant [26]. p. Dedecker has observed, based on the relation
w=09, L.dq—(aq Lg— L)dt =Ldt+9d,Lop wWith @ =dg—q.dt, that the property that among all forms
y=Ldtmod@w the form w= p.dg— H.dt is the only one satisfying dy =0mod®@ , is a particular
case of more general T. Lepage congruence.

Analogies between Geometric Mechanics & Geometric Lie Group Thermodynamics, provides
the following similarities of structures:

. . _dq OoH o
. L(G) & (B) g=99_1 5 05
o B and dt dp 90 (101)
T H(p) & s(Q)
ree H=pg—Léers= o L 0-22
=pq- <_>S_<Q’ﬂ>_ p aq aﬂ
We can then consider a similar Poincaré-Cartan-Souriau Pfaffian form:
w=pdq—Hdt & 0=(0,(Bdt))—sdt =(0,8)—s)dt = O(B).dt (102)
This analogy provides an associated Poincaré-Cartan-Souriau Integral Invariant:
[pdq—Hdt=[pdg—H.adr istransformed in j O(f).dt = j O(f).dt (103)
C, C, C, G,

We can then deduce an Euler-Poincaré-Souriau Variational Principle for Thermodynamics:
The Variational Principle holds on g, for variations 6 =1+|B,n], where n(r) is an arbitrary path that

vanishes at the endpoints, n(a)=n(b)=0:

6]L<I)(ﬂ(t)).dt =0 (104)

8. Koszul Affine representation of Lie Group and Lie Algebra

Previously, we have developed Souriau works on affine representation of Lie group used to
elaborate the Lie Group Thermodynamics. We will study here some extension of affine
representation of Lie group and Lie algebra given by Jean-Louis Koszul.

Koszul has proved that on a complex homogeneous space , an invariant volume defines with
the complex structure, an invariant Hermitian form. If this space is a bounded domain, then this
hermitian form is positive definite and coincides with the classical Bergman metric of this domain.
During his stay at Institute for Advanced Study in Princeton, Koszul has also demonstrated the
reciprocal for a class of complex homogeneous spaces, defined by open orbits of complex affine
transformation groups.

Let G aconnex Lie Group and E a real or complex vector space of finite dimension, Koszul
has introduced an affine representation of G in E such that:
E—E
atr>sa Vse G
is an affine transformation. We set A(E) the set of all affine transformations of a vector space E,

(105)

a Lie Group called affine transformation group of E. The set GL(E) of all regular linear
transformations of E, a subgroup of A(E).

We define a linear representation from G to GL(E):
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f:G— GL(E) (106)
s> f(s)a=sa—so YaeE
and an application from G to E:
q:G—-E (107)

s q(s)=so Vse G
Then we have Vs,te G:
f(s)a(®) +a(s) =q(sn) (108)
deduced from f(s)q(¢) +q(s) = sq(t) — so + so = sq(¢) = sto = q(st) -
On the contrary, if an application q from G to E and a linear representation f from G to

GL(E) verify previous equation, then we can define an affine representation of G in E, written

(f.a):

Aff(s):ar> sa=f(s)a+q(s) Vse G,VacE (109)
The condition f(s)q(¢)+q(s)=q(st) is equivalent to requiring the following mapping to be an
homomorphism:

Aff :se G Aff (s)e A(E) (110)

We write £ the linear representation of Lie algebra g of G, defined by f and ¢ the restriction
to g of the differential to q (f and g the differential of f and q respectively), Koszul has

proved that:

09~ fNq(X) =q([X,Y]) VX, Yeg 111)
with f:g— gl(E) and ¢g:g— FE

where gI(E) the set of all linear endomorphisms of E, the Lie algebra of GL(E).

Using the computation,

q(4d,Y)= % =f(s)f(V)als™) +f(s)g(Y) (112)
We can obtain: -

dq(4d Y
q((x.Y)= % = f(X)g()a(e) +f(e) f (V)= g(X))+ f(X)g(Y) (113)

where e is the unit element in G . Since f(e) is the identity mapping and q(e) =0, we have the

equality: f(X)q(Y)- f(¥)q(X)=q(X.Y]) -

A pair (fq) of a linear representation f of a Lie algebra g on E and a linear mapping ¢ from
g to E isan affine representation of g on E, if it satisfies f(X)q(Y)— f(¥)q(X)=4q(X,Y])
Conversely, if we assume that g admits an affine representation (fg) on E, using an affine
coordinate system {xl,,,_,x"} on E, we can express an affine mapping vi— f(X)v+¢(Y) by an
(n+1)x(n+1) matrix representation:

aﬂ(X)=|:f((;Y) ‘I((;Y):| (114)
where f(X) isa nxn matrixand ¢(X) isa n row vector.

X aff(X) is an injective Lie algebra homomorphism from g in the Lie algebra of all
(n+1)x(n+1) matrices, gl(n+1,R):

g gl(n+LR) (115)
X = aff (X)

If we denote g =aqff(g), we write G, the linear Lie subgroup of GL(n+1,R) generated by g .

An element of se Gy is expressed by:

Aff(s) {f(g) q(ls)} (116)
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Let M, be the orbit of G, through the origin o, then M  =q(G,)=G

aff
K, =1s€ G, /q(s) = 0}=Ker(q)-
Example:

w/Kw where

Let Q be a convex domain in R" containing no complete straight lines, we define a convex cone
V(Q) in R™=R"XR by V(Q) :{(ﬂx,x)e R"XR/xeQ,Ae R*} . Then there exists an affine
embedding:

Vixe Qs me V(Q) (117)
If we consider 7 the group of homomorphism of A(n,R) into GL(n+1,R)given by:

f
se AnR) .-{ (g) q(ls)}e GL(n+1,R) (118)

with A(n,R) the group of all affine transformations of R". We have 7(G(Q))c G(V(Q)) and the
pair (n,¢) of the homomorphism 7:G(Q) — G(V(Q)) and the map /:Q —V(Q) is equivariant:
los=n(s)ol and dlos=n(s)odl (119)

Let {xl,xz,...,x”} be a local coordinate system on M, the Christoffel’s symbols Fl;f of the connection

D are defined by'

9 _N (120)
; J a oF

The torsion tensor T of D is given by:

7(X,Y)=D,Y-D, X —-[X,Y] (121)
Jd d SETR: : k k k

T(Bxi’ax’) = ;Ty o with 77 =T} -T7; (122)

The curvature tensor R of D is given by:

R(X,Y)Z=D,D,Z-D,D,Z~Dy \Z (123)
a . i ar’ ar’ m i m i

R(a = j ZRM S With Ry = S(rrri, -rer) (124)

The R1cc1 tensor Ric of D is given by:

Ric(Y,Z)= Tr{X —R(X,Y)Z} (125)

R, —ch(a/ o j Z g (126)

Let G/K be a homogeneous space (on which G, a connected Lie group, acts transitively), Koszul
has proved a bijective correspondence between the set of G-invariant flat connections on G/K and the
set of affine representations of the Lie algebra of G. We consider a homogeneous space G/K endowed
with a G-invariant flat connection D (homogeneous flat manifold) written (G/K,D).

Let (G,K) be the pair of connected Lie group G and its closed subgroup K. Let g the Lie
algebra of G and k be the Lie subalgebra of g coresponding to K. X~ is defined as the vector
field on M =G/K induced by the 1l-parameter group of transformation e . We denote
A.=L,.-D,., with [ . the Lie derivative.

Let V' be the tangent space of G/K at o={K} and let consider, the following values at o:
J(X)=4,. (127)
q9(X)=X, (128)
where AX*Y* =-D, X " (where D is a locally flat linear connection: its torsion and curvature
tensors vanish identically), then:

flxr]) =L, 7)) (129)
f(0a) - fNa(x) =4(lx.Y) (130)
where ker(k)=¢,and (f,q) an affine representation of the Lie algebra g:
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(131)

WXeg X, =Z[Zf(X>,fx" +q(X)') N

The 1-parameter transformation group generated by X is an affine transformation group of V',

with linear parts given by ¢/ and translation vector parts :

Z( t)" " g(X) (132)

These relations are proved by using:
{AX,,Y —4.x" =[x y]
,a, =4

based on the property that the connection D is locally flat and there is local coordinate systems on M

5

with 4,.Y" =-D.X (133)

such that p J__ =( with a vanishing torsion and curvature:
J

O
Bx
T(X,Y)=0=D,Y-D,X =[X,Y] (134)
R(X,Y)Z=0=D,D,Z-D,D,Z =Dy, ,\Z (135)

deduced from the fact the a locally flat linear connection (vanishing of torsion and curvature).
Let @ be an invariant volume element on G/K in an affine local coordinate system {xl, X%, x"}

in a neighborhood of o:

O=Ddx" A...Adx" (136)
d

a i

We can write x* Z y'—— and develop the Lie derivative of the volume element :

J
LX~(U= (LXAI))de AcoAdx” +Z:t’l>.alx1 /\---/\LX*dxj Ao ndx” =(X*(D+(ZgitijDde' Aonde” (137)
J J

Since the volume element @ is invariant by G:

LX*a):O:X*d)+(Z?)}( }I) 0= X" log®= —Z
x

By using 4 .Y =-D_.X", we have:

9\ 9 J ¢ 9 )y 22 9 (39
(D A )}( ) Daf(AX*(ax‘fD AX{DB ax] D, D (Zﬂ( x) Zk:axfaxf ox* (459

o' ox’ ox' ax B‘v

(138)

But as D is locally flatand X~ is an infinitesimal affine transformation with respect to D:

2,k
D,(4,.)=0= X _ (140)
o ox'ox’
The Koszul form and canonical bilinear form are given by:
a=2810giq)dx' = Dlog® (141)
ox
Da= zalﬂd ‘dy’ = Ddlog® (142)
ox'dx’
L. .a=L_.Dlog®=DL .log®=DX"logd=-D Zalj =y 2 i =0 (143)
X X X — ox’ — dx'ox’

Then, L .a=0 VXeg.

By using  x"logd = _z‘—;ij] , we can obtain:
j X

oy’
.log®d=— : (144)
cxo=-3 L

By using 4 .Y =-D_.X", we can develop:
) dy' d
4. — = (145)
X (ax’ j D, & Z ox’ ox'

ox’

a(X")=(Dlog®)X") = D

L.a=0 X
X
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As f(X)=4,. and ¢(X)=X:
(re0)=1ra,., )=-%, Z’ —(0)=aX;)=a,(q(X)) (146)
If we use that LX,a =0 VXeg, then we obtain:
(Da)x",Y")=(D,-ak X ) =4, .a) X" )=—4,. (X)) +ala,. X )=al4, X") (147)
Dey(g(X),4(N)= o (f(4(X) (148)
To synthetize the result proved by Jean-Louis Koszul, if ¢z, and D¢, are the valuesof o and Da
at o, then:
a,(q(X))=Tr(f(X)) VXeg (149)
Da, (¢(X),q(1)={g(X),q(1), =a,(f(X)q(Y)) VX,Yeg (150)

Jean-Louis Koszul has also proved that the inner product (.,.) on V, given by the Riemannian metric

g, - satisfies the following conditions:

(f(X0q(Y),q(Z))+(a(Y), f(X)q(2)) = f¥V)q(X),q(Z)) +(a(X), f V)q(Z)) (151)

Koszul and Vey [194, 195] have also developed extended results with the following theorem for
connected hessian manifolds:

Theorem (Koszul-Vey Theorem). Let M be a connected hessian manifold with hessian metric g .
Suppose that M admits a closed 1-form o such that Do =g and there exists a group G of affine
automorphisms of M preserving o :

e If M/G is quasi-compact, then the universal covering manifold of M is affinely isomorphic to a convex
domain Q of an affine space not containing any full straight line.
o If M/G iscompact, then Q isa sharp convex cone.

On this basis, Koszul has given a Lie Group construction of a homogeneous cone that has been
developed and applied in Information Geometry by Shima and Boyom in the framework of Hessian
Geometry.

To make the link with Souriau model of thermodynamics, 1t Koszul form
a=Dlog®=Tr(f(X)) will play the role of the geometric heat Q0 and the 2" koszul form
Da=Ddlog®=(q(X),q(Y)) will be the equivalent of Souriau-Fisher metric, that is G-invariant.

9. Illustration of Koszul and Souriau Lie Group models of Information Geometry for
Multivariate Gaussian laws

The case of Natural Exponential families invariant by affine group has been studied by Casalis (in
1999 paper and in her PhD thesis) [44, 45, 46, 47, 48, 49, 50] and by Letac [124, 125, 126]. We give the
details of Casalis development in Appendix 3. Barndorff-Nielsen has also studied transformation
models for exponential families [16,17,18,19, 103].In this chapter, we will only consider the case of
Multivariate Gaussian densities.

To more deeply understand Koszul and Souriau Lie Group models of Information Geometry, we
will illustrate their tools for multivariate Gaussian laws.

Consider the General Linear Group GL(n) consisting of the invertible nxn matrices, that is a
topological group acting linearly on R" by:
GL(n)XR" - R" (152)
(A4,x)—~ Ax
The Group GL(n) is a Lie group, is a subgroup of the General Affine Group G4(n), composed of all
pairs (4,v) where Ae GL(n) and ve R", the group operation given by:
(Alavl )(A2,02)= (AIAZ’AIUZ +vl) (153)
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GL(n) is an open subset of R"’, and may be considered as n>-dimensional differential manifold with

the same differentiable structure than R” . Multiplication and inversion are infinitely often
differentiable mappings. Consider the vector space g/(n) of real nxn matrices and the

commutator product:
gl(n)x gl(n) — gl(n) (154)
(4,B)— AB—BA=|A4,B]
This is a Lie product making g/(n) into a Lie Algebra. The exponential map is then the mapping
defined by:
exp: gl(n) = GL(n)

o (155)

A exp(4)=)] A'
n=0 M.

Restricting 4 to have positive determinant one obtains the Positive General Affine Group G4, (n)

that acts transitively on R" by:

(4,0),x)> Ax+v (156)
In case of symmetric Positive definite matrices Sym*(n), we can use the Cholesky decomposition:
R=LL (157)

where L is a lower triangular matrix with real and positive diagonal entries, and L" denotes the
transpose of L, to define the square root of R.

Given a positive semidefinite matrix R, according to the spectral theorem, the continuous
functional calculus can be applied to obtain a matrix R"? such that R’ is itself positive and
R'"?R"? = R. The operator R'? is the unique non-negative square root of R.

N, :{N(,u,Z)/ LER"Te Sym%} the class of regular multivariate normal distributions, where 4 is

the mean vector and X is the (symmetric positive definite) covariance matrix ,is invariant under the
transitive action of GA(n). The induced action of G4(n) on R"xSym*, is then given by:

GA(n)X(R" XSym*n)—) R" X Sym*n (158)
(4,0).(.2)) > (4u+v, 4347)

and

GA(n)xR" —> R" (159)

(4,0),x)> Ax+v

As the isotropy group of (0,7,) is eqal to O(n), wa can observe that:

N, =GA(n)/ O(n) (160)
N, is an open subset of the vectorspace T, = {(77,9)/77 e R".Qe Symﬂ} and is a differentiable
manifold, where the tangent space at any point may be identified with 7 .

The Fisher information defines a metric given to N, a Riemannian manifold structure. The inner

product of two tangent vectors (771,521 )G T, (n,,Q,)e T, atthe point (Iu,z)e N, is given by:
_ 1 _ _
g(m:))((nngl)9(771991))2 77{2 1772 +5Tr(2 1912 IQ2) (161)

Niels Christian Bang Jesperson has proved that the transformation model on R" with parameter set
R"xSym*, are exacltly those of the form Pus = fus A where A is the Lebesque measure, where

fuz()= h((x —u)' = (x _ﬂ))/ det(z)’”> and  h:[04e[ > R* is a continuous function with
Th( 5) S%’l ds < +o0 - Distributions with densities of this form are called elliptic distributions.
0

To improve understanding of tools, we will consider G4(n) as a sub-group of affine group, that

could be defined by a Matrix Lie group G, that acts for Multivariate gaussians laws:
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(m,R)e R" xSym™ (n)
1/2 1/2
1 T
0 1 1 m=" " "lea,

X =R(0,]) > Y = X(m,R)
We can verify that M is a Lie group with classical properties, that product of M preserve the
structure, the associativity, the non commutativity, and the existence of neutral element:

12 12 112 p1/2 12 MM, € G,y

MM = R'™ m ||R)" m, _ R'"R)" R/"m,+m, M MeG.
2l 1o 0 1 T e (163)

12 1/2 V2pliz pli2 =\ MM, = MM,

M,.M, {Ré ”ﬂﬁ ﬂ ={R2 (:?1 ks ’"1 +’"2} M, (M, M) =(M,.M,)M,
M, I=M,
We can also observe that the inverse preserves the structure:
Rl/2 R—1/2 _R—l/2
M= MM =M =M = "ea, (164)
0 1 0 1 )
Y ~R(m,R) ..

Action of Affine Lie Gron: Y

[ p1/2 T s
X~N0,1) | R st

01

(m, R) € Sym(n)x R"

(Y] _[R'? m[X]|_[RX+m 2
= = , R* m
1 Lo 11 1 M=[ ]eG,,

0 1
X =R(0,1) > NX(m,R)
Figure 10. Affine Lie Group action for Multivariate Gaussian Law

To this Lie group we can associate a Lie algebra whose underlying vector space is the tangent
space of the Lie group at the identity element and which completely captures the local structure of
the group. This Lie group acts smoothly on the manifold, and acts on the vector fields. Any tangent
vector at the identity of a Lie group can be extended to a left (respectively right) invariant vector
field by left (respectively right) translating the tangent vector to other points of the manifold. This
identifies the tangent space at the identity g=7,(G) with the space of left invariant vector fields,
and therefore makes the tangent space at the identity into a Lie algebra, called the Lie algebra of G.
L, :{G”ff = Gy and R, :{Gaﬂ = Gy (165)

M L,N=MN M R,N=NM
Considering the curve y(r) and its derivative j(¢):

[R"@0) m() | RP@) i) 166
7@){ o } and y(t){ . 0} (166)
We can consider the curve with the point y(0) moved at the the identy element on the left or on the

right. Then, the tangent plan at identity element provides the Lie Algebra:

rw-t,. (7«)){””2’;”2“) R_”z(’"l(”‘m)} (167)

r'L(r),_O{RmRm(O) RUZ’”(O)}"’(LM.(y(r»j —dL, J(0)=dL, M (168)

O 1 dt =0
Lie Algebra on the right and on the left is the defined by:
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L, ., :T,,(G)—>g,
M'_)QL :dLMilM:MilM:'Rfl/le/z Rl/zm:| (169)
0 0
dR . :T, (G) =3,
M'_)QR zdRMileMM-l ='R71/2R1/2 m_Rl/ZRl/Zmi| (170)
0 0

We can then observe the velocities in two different ways , either by placing in a fixed outside
frame, either by putting in place of the element in the process of moving by placing in the reference
frame of the element.

{X(f)} = M{x} = {X(l)} = Q{X(t)} with x fixed (a7
1 1 0 1
|:x§l‘):| oy ﬁ( } - Fg )} -Q, ﬁ( } with X fixed (172)

In the following, we will complete the global view by the operators which will allow to link
algebra (from the left or the right) between them and also connect to their dual. We will first consider
the automorphisms, the action by conjugation of the Lie group on itself, that allows this operator to

carry a member of the group.
AD:GXG -G

(173)
MN+ AD,N=M.N.M"
M — 1211/2 ml M — R;/Z mZ
lo 1T o1 (174)
AD. M. = RY® —R’m +R"*m,+m,
M, 2 0 1

If now we consider a curve N(t) curve on the manifold via the identity att=0. Itsimage by the
previous operator will be then curve y=M.N(t).M ™' passing through Identity element at t = 0. As

N(0) is an element of the Lie algebra and its image by previous conjugation operator is called

Adjoint operator:

Ad :Gxg—g

N(O)=1 (175)

N()=neg

We can then compute the Adjoint operator for previous Lie group:
R—I/ZRI/Z R—1/2 - R—1/2R1/2 _R—1/2R1/2 .

n2L:|: 2 1Y 2 m2:|’n2R:|: 2 1Y 2 1Y m2+m2:|

Mnw Ad,,n=M.nM"' 2%

(4D, N(t)) with {

=0

0 0 0 0
Rz_l/zRé/z —R;l/zR;/zmz +R21/2m2 + R i,
0 0

We recall that the Lie algebra has been defined as the tangent space at the identity of a Lie
group. We will then introduced a Lie bracket [,], the expression of the operator associated with

(176)

Ad, ny, =n,, and AdManR:{ },AdMlanR:nu

the combined action of the Lie algebra on itself , called adjoint operator. The adjoint operator
represents the action by conjugation of the Lie algebra on itself and is defined by:

ad :gxg—g

\ 177)

N@O)=ne (
nmi>ad, n=mn—nm= 4 (4d,, n(t))=[m.n] with _( )=neg
=0 M0)=meg
We can then compute this operator for our use case:
o R1—1/2R1]/2 131—1/2";’l o R2—1/2R;/2 Rz_l/zmz (178)
1L > TR2L
0 0 0 0
-1/2(pl/2_. pl/2 - -1/2
ad, n, = [”u»nu]: |:0 R (Rl 1y~ R )Rz :| (179)
)'I]L 0 0
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ad n, = [an’nm]z 0 R]—l/zl‘e]l/z(_Rz-l/zl‘e;/zm2 +n-12)_R2-1/2R21/2(_ Rl-1/2R11/2m] +n-1|)i| (180)
" 0 0
To study the geodesic trajectories of the group, we consider the Lagrangian from the total kinetic
energy (a quadratic form on speeds). It may therefore in particular be written in the left algebra
"left", with the scalar product associated with the metric .

1 1
EL=E<nLanL>=ETr[nLTnL] (181)
If we consider as scalar product:
k> (k,n)= Tr(an)
and left algebra:
—-1/2 p1/2 -1/2 -
n, = {R R R m} (183)
0 0

we obtain for the total kinetic energy
E, :%(Tr(R"R)+mTR"n'1) (184)

We will then introduce the coadjoint operator that will enable to work on the elements of the dual
algebra of the Lie algebra defined above. Like algebra, which is physically the space of instantaneous
speeds, the dual algebra is the space of moments. For dual of left algebra, the moment is given by:

m, =% _ (185)

Where E, is the kinetic energy of the system and is currently associated with IT, is an element of
the left algebra. The moment space is the dual algebra, denoted g", associated with the Lie algebra
g. This value is deduced from the computation:

<8EL ’ 5U> _ pi Er(n, +£80) = E,(n,)

anL £—-0 £

with E, (n, +£.0U) =%<nL +£0U,n, +£.8U) =%(nL +&8U) (n, +&.8U) (186)
<aEL ,&]>=2.1tr( LT§U)=<}’[L,&]>:>B£=VIL
on, 2 on,
Then the moment map is given by:
o, 99 (187)

n, 11, =1,
We can obseve that the application that turns left algebra in its dual algebra is the identity
application but physically, the first are moment and the seconds instantaneous speeds.
We can also define the moment T, associated to the right algebra 7, by:
<HL,nL>=<HL,M'1nRM>=<HR,nR> (188)
Butas I1, =»n,, we can deduce that:

<nL,M’1nRM> =<HR,nR>

Rl/2 R—I/ZRI/Z R—I/Z . R_]/2R]/2 . _R—]/2Rl/2 . (189)
with M =" " = " | and = " "
0 1 0 0 0 0
R71/2R1/2 +R71n~1mT R*ln-ll
=10, =
0 0
Then, the operator that transform the right algebra to its dual algebra is given by:
Bu:9—-9
et TTra | (H'erilm)"'77RzmT1r1 MR 'm+ R,
Ny = 0 0 I, = 0 0

(190)
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As there is an operator to change the view of algebra, there is one that did the same on the dual
algebra, the co-adjoint operator that is the conjugate action of Lie group on its dual algebra:

Ad":Gxg’ .

9 =9 . with <AdM77,n> = <77, AdMn> where ne g (191)

M,nw Ad,n

We can then develop this expression for our use case of affine sup-group, we find:

4 b
M = {0 Je G
* _ _ -1
<AdM77, n> = <77, AdMn> = <77, MnM > o (192)
| | . s _|M=mbt A,
o 097 (4d}m,n)= L P R R 0
" 0 0
. n, n, g
5l
and we can also observed that:
Ad' p=|" +Amb" A, (193)
0 0
And the following relation between the left and the right algebras:
Ad, T, =TI, and 44’ I, =TI, (194)

As we have define a commutateur on the Lie algebra, it is possible to define one on its dual algebra.

This commutator on the dual algebra can also be defined using operator expressing the combined
action of the algebra of its dual. This operator is called the co-adjoint operator:

d’:gxg —4g" .

ad 199 g . with <adni7, K> =<77,adn1(> where xeg (195)

n,nad,n

We can develop this co-adjoint operator on its dual algebra for our use-case:

Kl K2:|
K= 0 0 eCG

. (ad;n, k)= (n,ad )= (n,nK—wn) ad'p=| T (196)
= Z)l %}eg*j < d, > _772n2T nn, = ' 0 0

K)= K *

L aan 0o o0 [ ad’n=1{nn}

n,n,
n= €

This co-adjoint operator will give the equation of Euler-Poincaré equation. While the Euler-Lagrange
equation is defined on the tangent bundle (union of the tangent spaces at each point) of the manifold
and give the geodesics, the equation of Euler-Poincaré equation gives a differential system on the
dual Lie algebra of the group associated with the manifold.

We can also comple these maps by an additional ones. First, pe T,,G the moment associated with
MeT,G intangentspace of G at M, and also two others that map the element of the dual algebra

in dual tangent space, respectively on the left and on the right:

<nL,nL>=<gLL,1nL,M> ), (197)
(11,.dL,, M)=(T1,,M"M)
dr, . :g9, > T,G

Where drR . 9, »>T,G

and
HL'_)pz(M_I)THL HRHPZHR(M%)T
(198)
From these relation, we can also observe that:

l_[L =n; =M_1M
p=M" MM
=
P:EM.M with 2, :(M*I)TM—l

All theses maps could be summarized in the following figure:

(199)
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Left E Right
§ meg < ‘, S weg  :0=¢
< A‘:;iM

dLM“ M qlTMG dRM“
""" 'a'g"""""“““““"I'Eﬂ““““""""" - ji'

dL,. »pel,G dR,, .

Dual Algebra
=
o
m
o

Figure 11. Maps between algebras

Heni Poincaré proved that when a Lie algebra acts locally transitively on the configuration space of a
Lagrangian mechanical system, the Euler-Lagrange equations are equivalent to a new system of
differential equations defined on the product of the configuration space with the Lie algebra

If we consider that the following functional is stationary for a Lagragian I(.) invariant with respect to
the action of the a group on the left:

b
S(,)=[1n,)dt with &(,)=0 and I:g—R (200)
Solution is given by Euler-Poincaré equation:
48 e d
dt on, "om, (201)

on, =T+ ad, T where I'(t)e g

If we take for the function I(.), the total kinetic energy £,, using that 7 757 = JE, cg, the

ny
Euler-Poincaré equation is given by:
a1, =ad, T1, with a _9E, =TI, eg, (202)
dt ‘ on, dn,
The following quantities are conserved :
dily _ (203)
dt

With this second theorem, it is possible to write the geodesic not from its coordinate system but from
the quantity of motion, and in addition to determine explicitly what are the conserved quantities
along the geodesic (conservations are related to the symmetries of the variety and hence the
invariance of the Lagrangian under the action of the group) .

For our use-case, the Euler-Poincaré equation is given by:

. 12 7 2p12\ _ _p-l/2 5T p-1/2

D :_annLTz with N, =R IR N (R R ) R R (204)
My =150 N, = R™"m (Rfl/zm)' _ R;1/2R1/2R71/2n-1

If we remark that we have R7V/2R"? = p7/? (R‘” 2 R): R'R, then the conserved Souriau moment could

be given by:

{R”R”Z + R rim” R‘m} _ {RIR +R™im” R (205)

H =
K 0 0 0 0
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Componants of the Souriau moment gives the conserved quantities that are the classical elements
given by Emmy Noether Theorem (Souriau moment is a geometrization of Emmy Noether

Theorem):
dr, d(R™R+R ") d(R™m) R'R+R'im™ = B = cste (206)
e dt d |=0= R = b
0 0 m=Db = cste
From this constant, we can obtain a reduced equation of geodesic:
r%z =Rb (207)
R=R(B-bm")

This is the Euler-Poincaré equation of geodesic. We can observe that we have obtained a reduction of
the following Euler-Lagrange equation [171, 172, 34]:

R+rm" —RR™'R=0

{ﬁ: —RR'i=0

The Fisher information defines a metric turning N, :{(m’ R)e R" X Sym*(n)} into a Riemannian

associated to the Information Geometry metric 52 = g’ R dm +1 Tr((R'ldR)z)

Manifold. The inner product of two tangent vectors (m,,R )e T, and (m,,R,)e T, at the point
(u,z)e N, is given by:

- 1 - ~
8(nz) ((mpRl )’ (mZ,RZ )): mITZ 1mz +Et”(2 1R12 le) (208)

And the geodesic is given by:

102)= [ &y O 7Ot (209)

We can also observe that the manifold of Multivariate Gaussian is homogeneous with respect to
positive affine group G4*(n):

dst =ds’  for Y=X"2X+u with GA*(n)={(1,2)e RxGL(R)/det(Z) > 0} (210)
caracterized by the action of the group (m,R)~ p.(m,R) = (2”2m +y,Z”2R2””) pe GA™ (n)

with H{E”z ﬂ}r} (211)
17l o 11

dsﬁ :d(zl/zm+ﬂ)T(zl/szl/zr)-'d(Zl/zm+lu)+%Tr(((zl/szl/zr)-ld(zl/szl/zr))z) (212)

ds; =dm" R'dm + %Tr((R’ldR)2 )z ds},
Since the special orthogonal group SO(n) = {6 e GL(R)/det(5) =1} is the stabilizer subgroup of (0,7,)
, we have the following isomorphism:
GA* (n)/ SO(n) = N, ={(m,R)e R" x Sym* (n)} (213)
p=(u2)r p(0.1,)= (.22 )= (u.5)
We can then restrict the computation of the geodesic from (0,7,) and then we can partially integrate
the system of equations:
{m =Rb (214)
R=R(B—bm")
where (R“ (0)ri(0),R™ (0)(R(0) +m(0)m(0)" )): (b,B)e R" x Sym, (R) are the integration constants.
From this Euler-Poincaré equation, we can compute geodesics by geodesic shooting [87, 91, 94, 153]
using classical Eriksen equations [69, 70, 71, 72], by the following change of parameters:
A= RO (@) 4 =—BA+bm"
{ i =16=-B5+(1+56"A"'Sp with
3(t)= R (tym(?)

{A(O) =-B (215)
AO)=1,,50)=0

5(0)=b

The initial speed of the geodesic is given by (5‘(0), A(o)). The geodesic shooting is given by the

exponential map:
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) A S5 @ -B b 0

Aty =exp(td) =) ’A) 5" & y'| with A= b7 0 -b' (216)
" o y T 0 -b B

This equation can be interpreted by Group Theory. 4 could be considered as an element of Lie
algebra so(n+1,n) of special Lorentz group SO, (n+1,n) and more specifically as the element p of
Cartan Decomposition |+p where | is the Lie algebra of a maximal compact sub-group
K =S(0(n+1)x0(n)) of the Group G =S0,(n+1,n). We know that its exponential map defines a
geodesic on Riemannian Symetric space G/K .

This equation can be established by following developments:
A6 @) (-B b 0)Aa & @

A =A@0)A=| 6" & 7 |=| b7 0 -b"||6" & ¥ (217)
& 5 T 0 -b B J\®" y T
We can the deduce that:
A=—-BA+bo" 218)
8=-BS+éb

If £=1+6"A"68, then (A,§) is solution to the geodesic equation presiouly defined. Since g(0)=1, it

suffices to demonstrates that ¢ =7 where 7=6"A"5.

From A(f)= A(¢).4, using that 6" =b"A—b"®", we can deduce:

{g‘ =b"5-b"y (219)
t=b"6-b"((r-£)A'5+D"A'S)

Then é=1%,if y=(r-&)A'5+®A'S, that could be verified using relation A.A™ =1, by observing

that:
r y o
AN =exp(-td)=A(-t)=|y" & & (220)
® 5 A
A =T o {A7+ e5+05=0 {y: —eA 'S - A0S N {y= —eA 'S - A0S (221)
AD" +35" +®A=0 |OTAT+A'SSAT + AP =0 |OTAIS+AIT+A DS =0

We can then compute y from two last equations:
y=(r-e)A'S+D"A'S (222)
As t=p"5-b" ((r— A+ (I)TA*&) then we can deduce that #=5"§-b"y and then #=¢.
To interprete elements of A, (I'(t),7(t))=(A(-1),8(-t)) , opposite points to (A(z),8(r)) , and
e=1+8"A"'6=1+y"T"y.

Then the geodesic that goes through the origin (0,7,) with initial tangent vector (p,-B) is the
curve given by (5(r),A(r)). Then the distance computation is reduced to estimate the initial tangent
vector space related by (R (0)rin(0), R (0)(R(0) + rir(0)m(0)" ))= (b, B)e R" x Sym, (R)

The distance will be then given by the initial tangent vector:

= \/ (0)" R™(0)rin(0) +%Tr[(R'1(0)R(O))2] (223)
This initial tanget vector vector will be identified by “Geodesic Shooting”. Let 7 =log , B

v, _ (deR v oLy g (dmj

dt dt 2 dt
e e R b (G R )
dt 2 dt dt 2\ ar dt

Geodesic Shooting is corrected by using Jacobi Field ] and parallel transport:
. () d’J (t)
Jdor

(224)

solution to +R(J(0), 7)) () = 0 With R the Riemann Curvarture tensor.

J(t) =

=0
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We consider a geodesic y between g, and g, with an initial tangent vector », and we suppose

that 1 is perturbated by w, to ¥+Ww . The variation of the final point ¢ can be determined

thanks to the Jacobi field with J(0)=0 and J(0)=w . In term of the exponential map, this could be

written:

J() = iexpg tV +aw) (225)
da ’ a0

This could be illustrated in these figures:

e
/
4
/ ~ —,
< — /
T N
/ i ‘
| L i M /</ ) P
LSS v \ /
. AN \:\ \\\ 83 = expg, Vo + Wy
A \ w I .*
oy | - i
L | e ]1 : /{
| s
b / g ,' /// Wl
// ~
p , ~
/ [ w WoX / 4 0, = expg, Vo
\ 4 X
£ 0

Figure 12. Geodesic Shooting Principle

We give some illustration of geodesic shooting to compute distance between multivariate
Gaussian density for the case n=2:

Minimal geodesic

12

1

0.8

0.6

033 0 02 04 06 08 1 T2
Figure 13. Geodesic Shooting between two multivariate Gaussian in case n=2

10. Souriau metric for Multivariate Gaussian Densities

To illustrate the Souriau-Fisher metric, we will consider the family of Multivariate Gaussian
densities and will develop some elements that we have previously developed purely theoretically.

For the families of Multivariate Gaussian densities, that we have identified as homogeneous
m
1

consider them as elements of exponential families, we can write £ (element of the dual Lie

1/2
manifold with the associated sub-group of the affine group {R } , we have seen that if we

Algebra) that play the role of geometric heat Q in Souriau Lie Group Thermodynamics, and £ the

geometric (planck) temperature.
_R!
R

R+mm" 5 R
These elements are homeomorph to the matrix elements in Matrix Lie Algebra and Dual Lie Algebra:
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R T 1 -1 -1
= R+mm™ m eqg - ER -R meg (227)
0 0 0 0
/2 '
If we consider »7 = {R m }, then we can compute the co-adjoint operator:
0 1
T_ T /2
0 0
We can also compute the adjoint operator:
/2 P | 1 -2 pi-li2 g
Ad, B=MBM" :{R ’”}[ZR —R m]{R R ’”}
0 1 0 0 0 1 (229)
_1 /2 p-1 pr-1/2 1 /2 p=1pr1=1/2 /2 p-1
Ad, = ER R™R —ER R™R™"m-R""R m
i 0 0
We can rewrite Ad,, f with the following identification:
1 -1 -1
0 0 (230)

with Q=R"?RR™? and n= (;m'+R’”2 m)
We have then to develop &(4d,,(f)), that is to say &(B) after action of the group on the Lie
Algebra for S, given by Ad,, (). By analogy of structure between £(3) and S, we can write :

1 0 1.5 -1
ﬂ={R -R m} AdMﬂ={QQ -Q n]
=

0 0 0 0 (231)

. R+mm’ m s Q+nn" n
= d =
O | IR B
We have then to identify the cohomology cycle (M) from &(4d,, (B))=Ad, (&)+6(M)
= OM)=E(4d,, (B))- Ad, & where:

T_ T /2
Ad),E= {R - ’"mo mm'” R . ’"} (232)
A R|1/2 RR|—1/2 1 [} R|1/2 1 ' Ryl/Z ! 1 ] RyI/Z
¢(4d,, (B))= H R m | SR m | S m R m (233)
0 0

The cocycle is then given by:

B T

RY2 RRV2 4 lm'+R'”2m lm’+R'”2m lm'+R'1/2m R4+mm” —mm'T RY*m

o(M) = 2 2 2 - 0 0

| 0 0 (234)

_(R.m RR'—I/Z_R)_,’_ (R'I/meTR'l/ZT _mm7)+ lmvaR'l/ZT +1R'1/2mm'T—mm'T lmv
(M) = 2 2 2

| 0 0
From @(M)=E&(4d,, (B))- Ad, & , we can compute cocycle in Lie Algebra
0=T6 (235)
used to define the tensor:
0(x,Y):gxg >R (236)

X, Y - (0(X),Y)

The Souriau-Fisher Metric is then given by:
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gﬂ([ﬂazl]a [ﬂnzz]): éﬁ(zla[ﬂnzz])

with

éﬁ(zlﬂzz ) = é(ZpZz )+<$aadzlzz> = <®(Zl)522>+<£’[zl’22 ]>

0 (8.2115.2.)=8,(2.5.2,)=8(,5.2.)+ (£.2,15.2.])
ez ) g2+ (E2.05.2.])

-R'm| and $=[R+mmr m:|
0 0 0 0

1

If we set Z, = [2 Q

With(....) givenby g:{L

0

0

- 1 - -
_Qllnli and 22:{2921 _Qzlnz}

0 0
ol oo

00 0 0
| - -1 | R -1 | -1 |
SR R m | -9y -Q ~Q; -Q)'n, |-R
16.2,1=pz,-2.8=|2 B e B R
o o | o 0 0 0 0
5.2,]= %(R‘IQQI ~Q;'R") —%(R"IQ;'nz ~Q;'R'm)
0 0
Z.15.2.]]- %Q;‘ -Q'n, %(R‘IQ;'—Q;'R“) —%(R"anfsz;'R“m)
o 0 0 0 ]
R -0iR?) —J(RMein —ei R m)| Jar o
i 0 0 0 0
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(237)

(238)

(239)

(240)

(241)

(242)

(243)

_ F(ﬂﬁ (ko -air )= (ks - e ) (e (R0, -0 R )= (R 0s - 0 R ')

0 0

We can then compute:

(Elz.18.2.]) - Trum((R-.Q; QiR -0 (R, -0 R-.m))f}

+T{(;(g;l R e ) +mmr)}
The Souriau-Fisher metric is defined in Lie Algebra g ,([3,Z,][5,2,]) where:
| . e | . g | -
[ﬂ’Zl]: Z(R Q' -Qr'R 1) _E(R 'Q'n —Q'R 1m) = EGll -Gl'g,
0 0 0 0
with G, =2(Q,R-RQ,) and g, =(I—RQ,R"'Q;")n, +(Q,RQ;'R™ — I)m
| e | Y e 1 . -
[ﬂ,Zz]z{A‘(R Q' -Q'R l) _E(R 'Q;'n, — Q'R lm)]:{szl —G21g2:|
0 0 0 0

with G, =2(Q,R-RQ,) and g, =(/ - RQ,R™'Q;")n, +(Q,RQ;'R™ — )m
1

and ﬁ: *Ril _Rilm
0 0

(244)

(245)

(246)

(247)

Another approach to develop the Souriau-Fisher Metric g ,((3,Z,][8,Z,]) is to compute the tensor

O(X.,Y) from the moment map J:
O(X,Y)=J xy]~ {J,,J,} with {, }Poisson Bracketand .J the Moment Map

(248)
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O(x,Y):gxg >R (249)
We can then write the Souriau-Fisher metric as:
éﬁ' (Z1 azz ) = J[ZI,ZZ] - {le ’JZZ }+ <§» [Zl ,Zz ]> (250)
Where the associated differentiable application .J, called moment map is:
J:M —g  such that Jo(x)= <J(x),X>, Xeg (251)

x> J(x)
This moment map could be identified with the operator that transform the right algebra to an
element of its dual algebra given by:

By 1990 252
N T p-1 T p-1 -1 1
7= n Ny N(l+m R m)+77m R NR"m+R™n
0 0 0 0

11. Conclusion

In this paper, we have developed Souriau’s model of Lie Group Thermodynamics that recovers
the symmetry broken by lack of covariance of Gibbs density in classical statistical mechanics with
respect to dynamic groups action in physics (Galileo and Poincaré groups, sub-group of Affine
group). Ontological model of Souriau gives geometric status to (Planck) temperature (element of Lie
alebra), heat (element of dual Lie algebra) and Entropy. Souriau said in one of his paper on this new
“Lie Group Thermodynamics” that “these formulas are universal , in that they do not involve the
symplectic manifold, but only Group G, the symplectic cocycle. Perhaps this Lie group thermodynamics could
be of interest for mathematics”.

We have observed that Souriau has introduced a generalization of Fisher Metric, that we call
Souriau-Fisher metric, that preserves the property to be defined as hessian of partition function
0 = M as in classical Information Geometry, but when the partition
C
function (Massieu Characteristic function) has been replaced by Souriau model.

g,(8.2,118.2,)=(0(2,).18.2,)) +(0.12,.15.2,])) (253)

This Souriau-Fisher metric, as observed by Souriau, is equal to minus the first derivative of the heat

logarithm gp=-

gp=- 3Q , and then could be compared by analogy to “specific heat” or “calorific Capacity”. This
equivalence between Fisher metric and “Heat Capacity” is of major importance and should be
related to Pierre Duhem theory of thermodynamics where notion of “Capacities” is at the heart of
general equations of thermodynamics.

Based on the Poincaré’s idea exposed in his paper of 1889 « Sur les tentatives d'explication
mécanique des principes de la thermodynamique », we have proposed, based on Souriau’s Lie
group model and on analogy with mechanical variables, a variational principle of Thermodynamics
deduced from Poincaré-Cartan integral invariant:

The Variational Principle holds on g, for variations 6f =1 +[8,n], where 15(r) is an arbitrary path that

vanishes at the endpoints, n(a)=n(b)=0:
)
S[@(B(t))dt=0 (254)
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where the Poincaré-Cartan invarian J‘ O(fB).dt = J' ®(B).dt is defined by ®(f5), the Massieu
c, G,

characteristic function, with the analogy of w:q)(ﬂ),dtz«g ﬂ>_ s).dt:<Q, (ﬂ.dt)>—s.dt where

q':@:aiHHﬂzﬁ L(Q)Hq)(ﬂ)
w=pdg - H.dt where dt dp 90 and | () 5(0) (255)
oL oD ,
PZ?qHQ:ﬁ H=p.q—L<—>s=<Q,,B>—(I)

We have also defined an Euler-Poincaré Equations for Souriau model:

dQ * d *
2 —ad and Z(44°0)=0 (256)
ar s dt( gQ)

For this new covariant Thermodynamics, the fundamental notion is the coadjoint orbit that is
linked to positive definite KKS (Kostant-Kirillov-Souriau) 2 form [] :
o, (X.Y)=(w[U,V]) with X=ad UeT M and Y=ad Vel M (257)

that is the Kahler-form of a G-invariant kahler structure compatible with the canonical complex
structure of M, and determines a canonical Symplectic structure on M. When the cocycle is equal to
zero, the KKS and Souriau-Fisher metric are equal. This 2-form introduced by Jean-Marie Souriau is
linked to the coadjoint action and the coadjoint orbits of the group on its moment space. Souriau
provided a classification of the homogeneous symplectic manifolds with this moment map. The
coadjoint representation of a Lie group G is the dual of the adjoint representation. If g denotes the
Lie algebra of G, the corresponding action of G on @', the dual space to g, is called the coadjoint
action. Souriau proved based on the moment map that a symplectic manifold is always a coadjoint
orbit, affine of its group of Hamiltonian transformations, deducing that coadjoint orbits are the
universal models of symplectic manifolds: a symplectic manifold homogeneous under the action
of a Lie group, is isomorphic, up to a covering, to a coadjoint orbit. So the link between
Souriau-Fisher metric and KKS 2-form will provide symplectic structure and foundation to
Information Manifolds. For Souriau Thermodynamics, the Souriau-Fisher metric is the canonical
structure linked to KKS 2-form, modified by the cocycle (its symplectic leaves are the orbits of the
affine action that makes equivariant the moment map). This last property allows to determine all
homogeneous spaces of a Lie group admitting an invariant symplectic structure by the action of this
group: there are the orbits of the coadjoint representation of this group or of a central extension of
this group (the central extension allowing to suppress the cocycle). For affine coadjoint orbits, we
give reference to Alice Tumpach PhD [189, 190, 191] that has developed previous works of K.H.
Neeb, O. Biquard and P. Gauduchon.

other promising domains of research are theory of Generating maps [51, 52, 199, 200] and the
link with Poisson geometry through affine Poisson group. As observed by Pierre Dazord [62] in his
paper “Groupe de Poisson Affines”, extension of Poisson Group to affine Poisson group due to
Drinfel’d, includes affine structures of Souriau on dual Lie algebra. Let an affine Poisson group, its
universal covering could be identified to a vector space with an associated affine structure. In case
that this vector space is an abelian affine Poisson group, we find affine structure of Souriau. For
abelian group (R3,+), affine Poisson groups are the affine structures of Souriau.

This Souriau’s model of Lie Group Thermodynamics could be the promising way to achieve
René Thom dream to replace Thermodynamics by Geometry [187, 188], and could be extended to the
Second Order Extension of the Gibbs State [92,93].
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"Si on ajoute que la critique qui accoutume l'esprit, surtout en matiére de faits, a recevoir de simples
probabilités pour des preuves, est, par cet endroit, moins propre d le former, que ne le doit étre la
géométrie qui lui fait contracter 'habitude de n’acquiescer qu’a I'évidence; nous répliquerons qu’a la
rigueur on pourrait conclure de cette différence méme, que la critique donne, au contraire, plus
d’exercice a l'esprit que la géométrie: parce que 'évidence, qui est une et absolue, le fixe au premier
aspect sans lui laisser ni la liberté de douter, ni le mérite de choisir; au lieu que les probabilités étant
susceptibles du plus et du moins, il faut, pour se mettre en état de prendre un parti, les comparer
ensemble, les discuter et les peser. Un genre d’étude qui rompt, pour ainsi dire, Uesprit a cette
opération, est certainement d'un usage plus étendu que celui ou tout est soumis a l'évidence; parce
que les occasions de se déterminer sur des vraisemblances ou probabilités, sont plus fréquentes que
celles qui exigent qu’on procede par démonstrations: pourquoi ne dirions -nous pas que souvent elles
tiennent aussi d des objets beaucoup plus importants ? " - Joseph de Maistre

« Le cadavre qui s’acoutre se méconnait et imaginant l'éternité s’en approrie Uillusion ... C’est
pourquoi j'abandonnerai ces frusques et jetant le masque de mes jours, je fuirai le temps ou, de
concert avec les autres, je m’éreinte d me trahir ». Emile Cioran — Précis de décomposition

Appendix A: Clairaut(-Legendre) Equation of Maurice Fréchet associated to “distinguished
functions” as fundamental equation of Information geometry

Before Rao [160, 31], in 1943, Maurice Fréchet [74] wrote a seminal paper introducing what was
then called the Cramer-Rao bound. This paper contains in fact much more that this important
discovery. In particular, Maurice Fréchet introduces more general notions relative to "distinguished
functions”, densities with estimator reaching the bound, defined with a function, solution of
Clairaut’s equation. The solutions “envelope of the Clairaut’s equation” are equivalents to standard
Legendre transform without convexity constraints but only smoothness assumption. This Fréchet’s
analysis can be revisited on the basis of Jean-Louis Koszul works as seminal foundation of
“Information Geometry”.

We will use Maurice Fréchet notations, to consider the estimator:

T=H(X,,.,X,) (258)

and the random variable 4(x)= M (259)
0

that are associated to: {7 = Z A( Xi) (260)

+oo 4oo oo
The normalizing constraint J' p,(x)dx =1 implies that : J' J' H Po(x,)dx, =1

—oco —oco  —oo I

If we consider the derivative if this last expression with respect to & , then

4oo oo

[-] {Z A(x,)}H po(x)dx, =0 8ives:E,[U]=0 (261)

—oo  —odl

Similarly, if we assume that E,[T']=6, then T"'TH(xl"“’ %, )[] po(x,Mdx, = 6, and we obtain by

derivation with respect to 6 :
E((rT-6U]=1 (262)
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Butas E[I']=6 and E[U]=0, we immedialty deduce that :
E[(r - E[T)U - ElU])]=1 (263)

From Schwarz inequality, we can develop the following relations :

[E(@r)f < Elz° JElr]

1< (7 - £l elw - £0 ) = (0,0, ) (264)
U being the summation of independant variables, Bienaymé equality could be applied :
(O-U )2 = Z [O-A(X,.) ]2 = n(O-A )2 (265)
From which, Fréchet deduced the bound, rediscoved by Cramer and Rao 2 years later :

1
o.V>—— (266)
)

Fréchet observed that it is a remarkable inequality where the second member is independent of the
choice of the function H defining the " emperical value " T, where the first member can be taken to
any empirical value T = H(X,,..,X,) subject to the unique condition E,[I'|=6 regardlessis 6.

19009
The classic condition that the Schwarz inequality becomes an equality helps us to determine when
1

o, reaches its lower bound N
no

n

The previous inequality becomes an equality if there are two numbers @ and f (not random and
not both zero ) such that a(H'-60)+ AU =0, with H' particular function among eligible H as we

have the equality . This equality is rewritten H'=6+A'U with 1' a non-random number.
If we use the previous equation, then :

E[(r - Elr)U - E)=1= E[(t1-6)U]= 2'E,[U* |=1 (267)
We obtain: {7 = z A(X,)= A'nE, |47 |=1 (268)
From which we obram A' and the form of the associated estimator H':
1 1 dlog p, (X))
A= =>H'=0+ CA (269)
nE[4”] nE[AQJZ‘ 96

It is therefore deduced that the estimator that reaches the terminal is of the form:

3 dlog pa(X D)
= - (270)

Jjapa (x):l dx

Do (x)

with E[H'|=6+1E[U]=6.
H' would be one of the eligible functions, if /' would be independent of #. Indeed, if we
consider £, [H']=6,, E|(H-6,V]|<E,|(H-6,7]| VH such that E, [H]=86,
H =6, satisfies the equation and inequality shows that it is almost certainly equal to 6.
So to look for g, we should know beforehand ¢, .
At this stage, Fréchet looked for “distinguished functions” (“densités distinguées” in French), as any
probability density p,(x) such that the function :
dlog pg(X)
h(x)=6+ (271)

ﬂapg(x)} dx

Po(X)
is independant of @. The objective of Fréchet is then to determine the minimizing function
T=H'(X,,.,X,) that reaches the bound. We can deduce from previous relations that:

1(9)% = h(x)—-8 272)
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But as A(6) >0, we can consider % as the second derivative of a function ®(0) such that:
)
dlogp,(x) 9°D(6)
= h(x)—6 (273)
Y Sg7 )=0]
Wich we deduce that :
0D(6
1) =log o (1)~ “2 2 hx) - 6]~ D(6) @74)
Is an independant quantity of 9. A distinguished function will be then given by :
aq;(g)[h(x) Ol (6)+0(x)
po(x)=e % (275)

With the normalizing constraint J' Po(x)dx=1-

These two conditions are sufficient. Indeed, reciprocally, let three functions ®(8), h(x) et /(x)

+oo 6<I>( )
that we have, for any 6 : J’ lhy- 9h®(0)+f(x)dx =1 (276)

—oo

Then the function is distinguished :
d 10g P dlog p,(x)

Jjapa(x):| dx
Do(x)

If A(x )a GI)(‘9)—1 when /1(x) - ﬂalogpﬁ(x)} po(Mdx=(c,) (278)

=0+ A(x )a q’(g) [h(x)-6] 277)

The function is reduced to /(x) and then is not dependant of 4.

We have then the following relation:
a<1>(9)

1L _f[o’@®) » S h-o)0@)+(x) 279
e J( J[h() of e dx 279)

06’

The relation is valid for any 8, on peut dériver I'expression précédente par rapporta 6 :
Hoo AD(O)

26 (”(X>-9)+‘1’(9)H’(X>[82®(6)j[h(x) —0ldx =0 (280)

06’

—oo

2
We can divide by % because it doesn’t depend on x.
4

If we derive again with respect to &, we will have :
+oo ID(6) ) 2 +oo acb( )
J-e 56 (hu)-e)ub(a)uu)[@ cI)(Q)J (h(x)-6)+®(8)+((x) (281)

= [h(x)- 6] dx = j dx=1

—oo —oo

1
A(x)

Combining this relation with that of , we can deduce that j(x) =1 and as A(x)>0

ERIC)
20’

9°D(6)

06’
Fréchet emphasizes at this step, another way to approach the problem. We can select arbitrarily
h(x) and [(x) and then ®(@) is determined by:

then >0.

oo BCD(H)

[h(x)-0h@(O)+0(x)
=1 (282)
20(8) too ID(O)
That could be rewritten : ," 96 " _ je o "M (283)

If we then fixed arbitrarily %(x) and /(x) andlets an arbitrary variable, the following function will
be an explicit positive function given by " :

J‘es.h(xw(x)dx — e‘l’(s) (284)

—oo
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Fréchet obtained fanally the function ®(4) as solution of the equation :
o(0) = 6. 0D(6) _yp 0D(6) (285)
20 20
Fréchet noted that this is the Alexis Clairaut Equation.
The case @ = cste would reduce the density to a function that would be independant of 8, and
4

so ®(#) is given by a singular solution of this Clairaut equation, that is unique and could be

computed by eliminating the variable s between :

®=05—¥(s) and g= a‘la’( s) (286)
s

Or between :

2?0 _ Tes:h(xw(x)dx and Tem(xw(x) [h(x) _ H]dx =0 (287)

®(6) =-log Jes'h(x)”(-*)dx +6.s where s is given implicitely by J:Oeslh“)”(-*) [h(x)-8ldx=0-

What is then, when we known the distinguished function, H' among functions H(X,,...,X,)

verifying E,[H]=6 and suchthat o, reaches for each value of @, an absolute minimum, equal to
1 .
Jno,

For the previous equation:
J log P dlog py(x)
h(x)=6+ (288)

J:Ppa (X)} dx
Po(X)

We can rewrite the estimator as :

H'(X o X)) =L [1(X,) 4+t (X, )] (289)
n

And compute the associated empirical value :

1
f= H'(x,,0,) = Zh(x )= 9+4(9)ZM
And if we take 8=¢, we have as /1(9) >0 :

Z% ~0 (290)

When p,(x) is a distinguished function, the emperical value ¢ of @ corresponding to a sample
X,,...,X, 18 a root of previous equation in ¢. This equation has a root and only one when X is a

distinguished variable. Indeed, as we have:

aCIJ(H)
[n(x)-6}+@(8)+0(x)

po(x)=e (291)

h(x;) 2
5 dlogp,(x,) _ 9*®(1) Z _,| with aif” >0 (292)

- ot ot n ot
zh(x )
We can then recover the unique root: ;=
n

This function 7 = H'(X,,..X,) z h(X,) can have an arbitrary form, that is a sum of functions of

each only one of the quantities and it is even the arithmetic average of N values of a same auxiliary
random variable Y = h(X). The dispersion is given by:
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(6, F=—1 = ! B (293)
" (e, ) n+f|:apg(x):|2 R ()
2
2L 06 Po(%) 960
and 7, follows the probability density:
_n(l—ﬁ)Z 5
=it i (o) = 22O (294)

o N2r 06’

¢ Clairaut Equation and Legendre Transform
We have just observed that Fréchet shows that distinguished functions depend on a function ®(9),

solution of the Clairaut equation:

D) =0. I0O) _ \P(GCD(H)j (295)
26 26
Or given by the Legendre Transform:
®=0.5-¥(s) and gza‘g(s) (296)
s

Fréchet also observed that this function ®(€) could be rewritten:
®(6)=-log J.es‘h(”*“")dx +6.s where s is given implicitely by fe&”“)*”(-*) [(x)-6dx=0-

This equation is the fundamental equation of Information Geometry.

The "Legendre" transform was introduced by Adrien-Marie Legendre in 1787 to solve a
minimal surface problem Gaspard Monge in 1784. Using a result of Jean Baptiste Meusnier, a
student of Monge, it solves the problem by a change of variable corresponding to the transform
which now entitled with his name. Legendre wrote: "I have just arrived by a change of variables that can
be useful in other occasions." About this transformation, Darboux [60] in his book gives an
interpretation of Chasles: "This comes after a comment by Mr. Chasles, to substitute its polar reciprocal on
the surface compared to a paraboloid." The equation of Clairaut was introduced 40 years earlier in 1734
by Alexis Clairaut [123]. Solutions "envelope of the Clairaut equation" are equivalent to the Legendre
transform with unconditional convexity, but only under differentiability constraint. Indeed, for a
non-convex function, Legendre transformation is not defined where the Hessian of the function is
canceled, so that the equation of Clairaut only make the hypothesis of differentiability. The portion
of the strictly convex function g in Clairaut equation y = px - g (p) to the function f giving the envelope
solutions by the formula y = f (x) is precisely the Legendre transformation. The approach of Fréchet
may be reconsidered in a more general context on the basis of the work of Jean-Louis Koszul.

Appendix B: Balian Gauge Model of Thermodynamics and its compliance with Souriau model

Supported by TOTAL group, Roger Balian has introduced in a Gauge Theory of
Thermodynamics [8] and has also developed Information Geometry in Statistical Physics and
Quantum Physics [3,4,5,6,7,8,9,10,11,12]. Balian has observed that the Entropy S (we use Balian
notation, contrary with previous chapter where we use —S as neg-Entropy) can be regarded as an
extensive variable ¢° = S(ql,,,,,q" ), with ¢’ (i=1,...,n), n independent quantities, usually extensive
and conservative, characterizing the system. The n intensive variables y, are defined as the partial
derivatives: y = M (297)

dq'

Balian has introduced a non-vanishing gauge variable p , without physical relevance, which
multiplies all the intensive variables, defining a new set of variables:

D.=—P¢Y; » i=L..,n (298)

The 2n+1-dimensional space is thereby extended into a 2n+2-dimensional thermodynamic space
T spanned by the variables p.,q" with i=0,1,...,n, where the physical system is associated with a

n+l-dimensional manifold M in T, parameterized for instance by the coordinates ¢',...,¢" and
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p, - A gauge transformation which changes the extra variable p, while keeping the ratios
p./ p, =—y, invariant is not observable, so that a state of the system is represented by any point of a
one-dimensional ray lying in M, along which the physical variables ¢°,....¢",7,,...,7,are fixed.
Then, the relation between contact and canonical transformations is a direct outcome of this gauge
invariance: the contact structure = g4° _Zn:%.dq" in 2n+1 dimension can be embedded into a
i=1
symplectic structure in 2n+2 dimension, with 1-form:
0= p,dq’ (299)
i=0
as symplectization, with geometric interpretation in the theory of fibre bundles.
The n +1-dimensional thermodynamic manifolds M are characterized by the vanishing of this
form @ =0 The 1-form induces then a symplectic structure on T :
da)=2dp,. N (300)
i=0
Any thermodynamic manifold M belongs to the set of the so-called Lagrangian manifolds in
T, which are the integral submanifolds of d@ yith maximum dimension (n +1). Moreover, M is
gauge invariant, which is implied by @=0. The extensivity of the entropy function S(ql, ,q") is

expressed by the Gibbs-Duhem relation § = z

aq i=0
defining a 2n+l-dimensional extensivity sheet in 7, where the thermodynamic manifolds
M should lie. Considering an infinitesimal canonical transformation, generated by the Hamiltonian

hq°,q"ssq" s Dos Proes ) G, _ 9 and p = ok , the Hamilton’s equations are given by Poisson
ap, vy

bracket:

o={g. )= zaial_alai (301)

79q' dp;  9q; Ip;

The concavity of the entropy S (q‘ S ), as function of the extensive variables, expresses the
stability of equilibrium states. This property produces constraints on the physical manifolds M in
the 2n+2-dimensional space. It entails the existence of a metric structure in the n-dimensional space
g, relying on the quadratic form:

n 2
a5’ =-a’s =3 5 agiaq’ (302)
i,j:laq dq
which defines a distance between two neighboring thermodynamic states.
S dy, = Zaa,asj dg’ then:  ds® =—%"dydg, =i2dp,.dqf (303)
i=1 Po =0

The factor 1/ p, ensures gauge invariance. In a continuous transformation generated by /1, the

metric evolves according to:

n 2 2
—(d )—iahd2 1 > oh dp,dp, - Jh dq'dq’ (304)
Py 94" Py 52 39'9p, dq'dq’
We can observe that this Gauge Theory of Thermodynamics is compatible with Souriau Lie Group
4
Thermodynamics, where we have to consider the Souriau vector B=| 11" transformed in a new
Y
vector:
— Do)
Di==PyYir p= =—p,.B (305)

_p07n
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Appendix C: Casalis-Letac Affine Group Invariance for Natural Exponential Families
The characterization of the natural exponential families of R4 which are preserved by a group of
affine transformationsis has been examined by Muriel Casalis in her PhD and her different papers.
Her method has consisted in translating the invariance property of the family into a property

concerning the measures which generate it, and to characterize such measures.

Let E a vector space of finite size, E° its dual (6,x) duality braket with (0,x)e E'XE . u

Positive Radon measure on E, Laplace transform is :

L,:E = [0,00] with 6 L,(6)= [ () (306)
E

Let transformation k (¢) defined on ©(u) interior of D, = {66 E',L 0 < oo}:

k,(0)=1logL,(6) (307)
natural exponential families are given by:

()= P(0.u)dx) = €™ (). 0 € ©(10) (308)
with injective function (domian of means):

K, (6)= j xP(6, 1 )u(dx) (309)

E

the inverse function:
W, M, -0 with M, =Im(k', (©(w))) (310)
and the Covariance operator:

Ve(m) =k (w,om)=w,m)", me M, (311)

Measure generetad by a family F is then given by:
F(u)=F (') < Ja,b)e E* xR,such that u'(dx) = ' u(dx) (312)

Let F an exponential family of E generated by x4 and ¢:x+ g x+v, with ¢ e GL(E)
automorphisms of £ and v e E, then the family ¢(F)={p(P(6,1)),6€ ©(1)} is an exponential
familly of E generated by ¢(u)

Definition:

An exponential family F is invariant by a group G (affine group of E), if Vpe G,p(F)=F:
Vi, F(p(4)) = F (1) (313)

(the contrary could be false)
Then Muriel Casalis has established the following theorem:

Theorem (Casalis):
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Let F=F(u) anexponential familly of £ and G affine group of E, then F isinvariant by
G if and only:

Ja:G — E",3b: G — R, such that:

alpp)='g. al@)+alp)
v(¢’ ¢l)e G2 , ’ ' ’ L (314)
blog)=b(p)+b(p) - (alp).g,'v,)

Ve G,p(u)(dx) = e“ 2" y(dx)

When G is a linear subgroup, b is a character of G and a could be obtained by the help of
Cohomology of Lie groups.

If we define action of G on E’ by:

gx='g'x,ge G,xe E’ (315)
It can be verified that:

alg,g,)=g alg,)+a(g) (316)
the action ¢ is an inhomogeneous 1-cocycle:

Vn >0, let the set of all functions from G” to E”, S(G" JE *) called inhomogenesous n-cochains,

then we can define the operators 4" : S(G" JE” ) - S(G”“, E*) by:

n

an(gla'“ﬂgnH)zgl‘F(gzﬂ""gn+l)+ - (_l)iF(glagzv'"ﬂgigi+1"“ﬂgn) (317)
+(-1)"F(g.g00008,)

Let z" (G,E*)zKer(d"lB(G,E"):Im( "‘1) , with Z" inhomogneous n-cocycles , the quotient:

H'(G.E)=2"(G.E")B"(G.E") (318)

is the Cohomology Group of G with valuein E". We have:

d°:E" > 3(G,E")

(319)
xl—)(gl—)g.x—x)

7' ={re B, gx=xYge G} (320)

d':3(G,E")—3(G*,E") c21)
Frd'F > le(gpgz):gl-F(gz)_F(g1g2)+F(g1)

7' ={Fe3(G.E"}F(g,g,)=g,.F(g,)+ F(g).¥(g,.,)c G*] (322)

B' ={Fe3(G.E" }3xe E",F(g)=gx—x} (323)

When the Cohomology Group H' (G,E *): 0 then:

72'(G.E")=B'(G.E") (324)
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= 3ce E",such that Vg e G,a(g)z([d—’g’l)c (325)
Thenif F =F(u) is an exponential familly invariantby G, u verifies:
_ <c,x>—<c,g’1x>+b(g)
Vge G glu)dx)=e u(dx) (326)
Vge G.gle™ u(dn))= e i) with g1, (dx) = €' u(dx) (327)
For all compact Group, H' (G, E *)z 0 and we can express a:
A:G— GA(E
= GA(E) (328)
g A4, , 4,(0)='g"0+a(g)
' 2 _
V(g,g )E G ’Agg' - AgAg' (329)
A(G) compact sub - group of GA(E)
3fixed point = Vg € G, 4, (c)="g "c+a(g) =c = a(g)=(I,~'g" k (330)
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