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Abstract: An approximation-free and fully quantum optic formalism for parametric processes is 
presented. Phase-dependent gain coefficients and related phase-pulling effects are identified for 
quantum Rayleigh emission and the electro-optic conversion of photons providing parametric 
amplification in small scale integration of photonic devices. These mechanisms can be manipulated to 
deliver, simultaneously, sub-Poissonian distributions of photons as well as phase-dependent 
amplification in the same optical quadrature of a signal field. 
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1. Introduction 

Small scale integration of photonic devices holds the prospect of overcoming speed limits associated 
with back and forth conversions between the electrical and optical domains for signal processing and 
transmission. Integrated photonic platforms [1-3] will contain their own low power optical sources which 
will be used for on-chip signal processing. However, the low levels of power rule out any significant 
nonlinear effects for χ (2) and χ (3) , the second and third order susceptibilities. For instance, a recently 
reported phase-sensitive amplifier [4] operating on χ(3)  in semiconductor materials can only deliver 
output signal powers of less than −31 dBm for input pump powers of −1 dBm.  

Yet, two recently identified parametric processes [5] have the potential to operate as integral parts of 
a photonic integrated circuit (PIC) with a high degree of photonic conversion ( > 90%), as they require low 
pump powers (< 10 mW) and very short interaction lengths. Parametric amplification and phase shifts 
can be performed with first-order susceptibility quantum Rayleigh emissions [6] in the form of optically 
linear parametric (OLP) effects and the corresponding electro-optic susceptibility-based conversion of 
photons [7] in the form of electro-optic parametric (EOP) processes, both of which require low optical 
pump powers and short interactions lengths of a few microns for OLP interactions and a few centimetres 
for EOP. These interactions can be highly efficient and require only a pair of a pump and a signal optical 
waves, and functional devices can be fabricated with well-established technologies [8]. 

As parametric processes of photonic conversions constitute a major mechanism for generating 
nonclassical states of light [9-11], any new insights into such interactions should be of particular interest 
in the design and operation of functional devices. Quantum optic noise reduction and phase-sensitive 
amplification will benefit an optical transmission system throughout the entire link and, in particular, at 
the receiver and detection stages of operation [12]. Quantum noise stems from fluctuations in the 
distribution of number of photons and/or the distribution of associated phases of the optical fields [12], 
and include: the vacuum fluctuations of any electromagnetic field of radiation, the spontaneous emission 
of photons by an excited electric dipole polarization, the Poisson distribution as a function of time of the 
number of photons in a coherent beam of light, fluctuations in the state of polarization, etc.  

Experimentally, given the very low efficiency of parametric conversion of photons carried out by   
χ(2) and χ(3) - based materials, the undepleted pump approximation becomes a critical aspect of the 
interaction, along with the phase-matching condition. Theoretically, photonic noise reduction through 
variance squeezing – below the standard quantum limit (SQL) [9] of an optical coherent state [9-10] – is 
implemented by simultaneous amplification of a field quadrature of phase ϕ (defined by adding two 
output fields or phasor modes) and attenuation of the corresponding conjugate quadrature ϕ + π/2. This 
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leads to the definition of a virtual photon annihilation operator [10-11] which is the superposition of 
various levels of a photon annihilation operator a and a photon creation operator a*. This type of 
quadrature noise squeezing requires a two-photon output per interaction [10] and it is linked to the 
Bogoliubov transformation for boson particles.  For example, the output annihilation operator of the 
signal mode a s is given as a superposition of the input operators weighted by c – number functions, i. e., 
a s (z) = c1 (z) a s (0) + i e i ϕ p r  c 2 (z) a* i (0) ; the subscripts denote signal (s) and idler (i) waves, and φpr 
identifies the pump phase(s) of the interaction term. This expression is based on the approximation of the 
undepleted pump which is treated classically by ignoring its operators, resulting in a gain coefficient go 
which is not allowed to vary at all, leading to many significant properties being discarded as a result of 
the linearization of the rate equations.  

While the cross-coupling between a*i  and as  arises from the parametric conversion of photons, the 
self-coupling term has no physical origin being a mathematical artefact as a result of the conventional 
solution containing, simultaneously, an amplifying ( + go = χ(2) √ Pp ) and an attenuating (− go ) exponential 
factors defined by the product of a susceptibility and the pump power Pp. Commonly used functions are:  
c1 (z ) = cosh (go z)  and c2 (z ) = sinh (go z ) for a phase-matching condition [13]. But no explanation has 
ever been provided as to how the same parametric process can, physically, amplify and attenuate 
simultaneously the signal wave. Indeed, a formal integration of Eq. (22) of [13] yields:  as (z) − as (0) = =      i 

e i ϕ p r go ∫ a*i (z) dz  indicating that c 1 = 1 for any conditions and remaining unchanged throughout the 
propagation. Whether the input signal operator is amplified or attenuated at a particular point z in the 
dielectric medium will depend on the local value of the relative phase between the pump(s) and the signal 
and idler waves. This is not the case with the Bogoliubov-type solution which has a phase-independent 
gain coefficient go.  

Furthermore, if the classical pump amplitude, in the driving term of the formal integral noted above, 
is replaced by its quantum optic representation, i.e., c p a p , then the driving force a p a*i  on the right-
hand side of that equality would oscillate at an angular frequency  – (ωp – ωi ) = – ωs indicating that only 

as is changed without any appearance of a creation operator as* as suggested by the Bogoliubov 
transformation. Additional physical deficiencies of the Bogoliubov solution are outlined in Appendix A 
below. 

Consequently, an approximation-free and fully quantum optic formalism for parametric processes is 
needed and developed in Section 2 below, based on the concepts outlined in [5]. The parametric 
amplification consists of stimulated emission of photons which adopt the same characteristics as the 
stimulating beam. The direction of photon coupling, e.g., for four photon–mixing interactions between 
the central frequency pump(s) and the sideband frequency signal/idler waves, depends on the phase 
difference between the two pairs of waves. This process is also accompanied by spontaneously emitted 
photons [14-16] which have arbitrary phases and states of polarization. The spontaneous emission 
provides the seed photons to be amplified in the absence, at the input, of another stimulating optical wave. 

The critical role of the parametrically engendered phases has been demonstrated experimentally [15-
17]. A physically meaningful phase sensitive (PS) gain coefficient was identified in [14, Eqs. (24)- (29)] 
along with its spectral bandwidth.  

The remainder of this article involves no approximations and presents in Section 2, a fully quantum 
optic derivation of the parametric equations of motion describing the evolution of the complex c - number 
functions of the photon annihilation and creation operators, based on the concepts outlined in [18-19]. 
Section 3 presents a generalized phase-dependent (PD) gain coefficient for parametric interactions, and a 
physically meaningful explanation for the generation from spontaneous emission of an idler wave phase-
conjugated to the signal, and quadrature waves for maximal amplification and attenuation. Applications 
are outlined in Section 4, followed by a discussion, in Section 5, of new features emerging from a fully 
quantum optic approach to parametric amplification.  
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2. Quantum optic parametric equations of motion 

Quantum optically, in the Heisenberg picture, the evolution of a physical process is described by 
relevant varying operators while the initial state wave functions are kept unchanged. A varying operator 
itself is the product of a basic operator and a c - number complex function whose values are determined 
by the Heisenberg equations of motion [18-19]. The initial conditions are determined by the expectation 
values of the basic operator. The c-number functions for coherent states of light are the eigenvalues α 
(alpha) numbers, and combinations of them can be measured experimentally [20]. 

The phase dependence of the parametric gain coefficient and the related phase pulling effect - 
presented in Appendix B for the classical fields - can also be derived quantum optically by means of the 
Heisenberg equations of motion for the annihilation and creation operators of all the optical fields - 
including the pumps - involved in the interactions. 

Quantum mechanically, e.g., [18-19], the Hamiltonian of interaction Ĥint which describes the exchange 
of photons by stimulated emission involving an electric dipole polarization operator  d̂ at point z and 
time t , and an additional optical field, takes the form:                                    

Ĥint  = ħ ωj  χ Γ (dˆ †
jâ  + †d̂ â j )                                 (1) 

where the reduced Planck’s constant and the relevant susceptibility are, respectively, denoted by ħ and χ. 

The constant of proportionality Γ relates the Hamiltonian expressed in terms of the electric field operators 

to the Hamiltonian Ĥint associated with photon annihilation and creation operators,  â j and †
jâ  , of the 

ω j field ( j  = 1, 2, 3, 4). These are defined by (see Appendix B for spatial field distributions):     

 â j (z, t)  =  â j (t)  f j (x, y, z) e −i (ωj t – βj z )                             (2a) 

                    †ˆ ja (z, t)  = †
jâ (t)  f j (x, y, z) e i (ωj t – βj z )                              (2b) 

 

The Heisenberg equation of motion for â 1  leads to 

   =
∂
∂

   ˆ 
 

 1a
t  

i− [ 1a  ˆ , Ĥint ] = − i ω1  Γ  χ  d̂                                (3) 
after keeping only terms of the same frequency. For a χ (3)–based interaction,  ω2 + ω 3 =  ω 1 + ω4   and 

32  
   

 
ˆˆˆ  aa=d  †

4â                                                       (4) 

Thus, the photon annihilation operator  â  acts on a coherent state  ∣ α >  to generate a complex α 

(alpha) number, i.e., â ∣ α > = α ∣ α > , which has an amplitude and a phase:  α  = A  e –i φ  as shown in  

Eqs. (5-9) of [20]. No phase operator is involved in this quantum derivation. Eq. (3) is in fact the equivalent 
of Eq. (7.12) of reference [18] and the α complex numbers correspond to the “c - number functions “ of Eqs. 
(3.14) and (3.15) of the trial solutions of [21]. The composite wave function of coherent states [22] is:   ∣Ψ > = ∣ α 1  > ∣ α 2  > ∣ α 3  > ∣ α 4  >                                          (5) 

    Combining Eqs. (2-4) leads to this equation of motion:  
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      =
∂
∂

   ˆ 
 

 1a
t

− i ω1   Γ 
(3) 

  χ 32      
ˆˆ  aa †

4â                                     (6) 

which is similar in structure to Eq. (14) of reference [19].  Next, both sides of this Eq. (6) are multiplied 

from the right by ∣ Ψ >  and from the left by  < Ψ ∣   to produce the corresponding eigenvalues of the 

annihilation operators, so that:  =
∂
∂

   α  
 

 1t
− i   ω1   Γ 

(3)  κ  α 2  α 3 α*4                                                          (7) 

 After defining  α = A  e –i φ; R1 = (A2 A3  A4) / A1 ;   θ = φ2  +  φ3  −  φ4  − φ1  + ∫ (∆β +  ∆βNL) dz, and               

κ = 2 n γ(3) / ko 1;4 , (the overlap integral γ(3) being defined in Eq. (B7) below), and substituting into Eq. (7), 

we obtain the rate equations for the amplitude and the phase of the eigenvalue α1   

                1   A t∂
∂

 =  −  ω 1   Γ (3)  κ  R1  A1  sin θ                                            (8) 

               t 1ϕ∂
∂  =   ω 1   Γ 

(3) 
  κ   R1   cos θ                                          (9) 

These equations for the complex functions of the operators’ c-number functions mirror the equations 
(B1-6) derived below from the Poynting theorem of the flow of energy and can also be solved by means 
of elliptic functions [23-24]. The parametric interactions of χ (2) –based materials satisfy identical equations 
of motions. 

The mixing of four photons within a single optical beam of one frequency can lead to inter-
quadrature coupling of photons, with one photon returning into the same quadrature state (p), and 
another photon crossing into the second quadrature state (q) as a consequence of the relative phase being 
−π/2, that is:  φ p + φ p − φ p − φ q  = −π /2. This is a much weaker version of the OLP exchange of power [6, 
Eq. (5)]. 

 
3. Phase-dependent gain coefficients and phase-pulling effects  

An input-output transfer function for the expectation values of the signal or idler powers P 1; 4 can be 

found by recalling the relation between the flux of photons  N =  ∣ α ∣ 2   and the optical power of a beam 

[22], i.e., P = ħ ω N. This will unify the classical (Appendix B) and quantum optic rate equations (8) and 

(9) above. 

A formal integration of Eq. (B1) will define a gain factor G1;4 (z, θ)  and an output power  P1; 4 (z), 

that are: 

                  G 1;4  (z, θ) =  exp  g 1;4 (s, θ) ds                                    (10) 

                 P 1; 4 (z)  = G 1;4 (z, θ) P1;4 (0)                                         (11) 

The phase - dependence of the parametric conversion of photons is determined by the gain coefficient 

g of Eq. (B2) through the relative phase θ  of  Eqs. (B4-5).  Signal and idler waves photons will be 

absorbed by the pump for 0 < θ < π , and will be amplified for  −π /2 < θ < 0.  The minimum level of 

input optical power corresponds to the spontaneous emission [14]. 
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The power ratio r1;4 (z)  of Eq. (B3) also plays the role of a saturation factor, reducing the gain 

coefficient for higher input levels of  P1;4.  A higher power ratio r1; 4 (z) leads to a higher gain coefficient 

g but also speeds θ  towards −π /2. This is a parametric phase pulling effect which, for P pump >> P signal/idler, 

can overcome a phase-mismatch Δβ + Δβ NL ≠ 0 as explained in the next paragraph. 

The parametric phase pulling (PPP) effect undergone by the signal wave emerges from the rate of change 
of  φ 4  which dominates the shift in the relative phase θ  in  Eqs. (B4-6) for  P2 = P3 >  P1  >> P4.  

This is illustrated in Fig. 1. From Eq. (B4), for  −π /2 < θ < π /2, the relative phase will rotate clockwise on 

the phasor circle ( in the negative direction) towards −π /2 ; and for  π /2 < θ < 3 π /2,  it will rotate in  

the positive direction as  − cos θ > 0. This field phasor rotation suggests the possibility of reducing phase 
fluctuations as the relative phase, if dominated by the ratio r1; 4 , is shifting towards the same optimal phase 
of  −π /2, regardless of the initial phase values.  In the process, the gain coefficient g1  increases in value 

and becomes locked-in at the optimal value of θ  for a phase-matched interaction. 

 

 
 

                                   π/2      A 

                                                         

        ± π                                                    0   

            B                                

                          − π/2 

Fig. 1. The role of the parametric phase pulling 

effect for    P2  = P3 >  P1  >> P4   in  shifting  θ  

towards   − π /2,    for any input signal phasor.

 

For a vanishing total phase mismatch, with  P2 = P3 > P1 >> P4 and spontaneous emission initiating 
one sideband wave P4 , its phase φ 4  change  will dominate the shift  of the relative phase to bring 

about  θ = −π /2 = φ2 (0)  + φ3 (0)  − φ1 (0)  − φ4   at the output.  By adjusting the initial pump phases  
φ2 (0) + φ3  (0),  a conjugate phase  φ4  = − φ1 (0) can be obtained. 

From Eqs. (B1-6) we find that by setting φ2  (0) + φ3  (0) = 0, the propagating quadrature waves of     
φ1;  4 = ± π / 4  and  φ1;4  = π ± π /4  are, respectively,  amplified (+) and attenuated (−), being separated 

by π rad.  Their nonlinearly induced phases are obtained from Eq. (B6). Other input phases are pulled 
towards these values by the PPP effect of the last term of Eq. (B6). The parametric phase-pulling effect 
will shift the arbitrary phases of photons towards a common value, thereby reducing the level of phase-
noise as demonstrated experimentally in [25].  
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4. Simultaneous amplification of a signal and sub-Poissonian distributions of photons  

We have identified in the previous two sections the parametric phase-dependent gain coefficient and 
the related parametric phase-pulling effect as fundamental mechanisms underpinning two-photon output  
per interaction for χ (2) and χ (3) parametric processes for any level of optical powers and conditions. In this 
section, we consider the possibility of generating sub-Poissonian distributions of photons with the 
assistance of optically linear parametric (OLP) [6] and electro-optic parametric (EOP) [7] interactions 
which involve only one-photon output per interaction – with one-photon input – although the EOP 
conversion requires one microwave photon.  The rate equations for these processes are presented in 
Appendix C for a phase-dependent gain coefficient and the related phase-pulling effect – cf. Appendix B, 
and they are derived in a similar manner to Section 2 above by setting the appropriate electric dipole 
operators.  

Let us consider a strong optical pump of angular frequency ωo in the form of a coherent state of light 

which is characterized by an α eigenvalue possessing a large average number of photons ‹N› = No , and 

a narrow phase-dispersion [26, Sec. 8a] centred on its average value φo. Although the optical pump is 
commonly considered to remain undepleted, its temporal waveform N ( t ) displays photon number 
fluctuations which should fall within the Poisson distribution, with a quantum noise standard deviation 
of √ No. A simple method for reducing the fluctuations of a strong pump would have its beam split into 
two equal parts and each part launched into one branch of an optical time-delay (τ) interferometric filter, 
so that, at the output, the number of photons will be proportional to N out = 0.5 [N (t) + N (t + τ) +                 
+ 2 N (t) N ( t + τ ) 1/2 cos (ωo τ)]. The cosine term can be eliminated by adjusting the time delay so that     
cos (ωo τ) = 0, leading to a Fourier transform of the superposition of two replicas of the photon number 
waveform, and their spectral power S (f) cos 2 (π f τ) being shaped by a filter profile which will attenuate 
high electrical frequencies or photon-number sinusoidal waves associated which sharp rises and falls in 
the photon number fluctuations. 

 
4.1. OLP optical couplers  
An optical directional coupler (ODC) composed of two parallel and identical optical waveguides can 

operate as a phase-sensitive (PS) amplifier when the signal power launched into one waveguide is much 
smaller than the pump power propagating in the other waveguide. This operation would be described by 
Eqs. (C2 - C3) of Appendix C below indicating that the phase-sensitive gain coefficient g s = g a of a signal 

is inversely proportional to the square root of the signal’s power √ Ps, thereby reducing the level of 
fluctuations in the output number of photons by enhancing the gain for the smaller number of photons. 
As a result, a sub-Poissonian distribution of photons is generated through the saturation-like 
amplification which is the consequence of the stimulating field being different from the pumping field.  

The possibility of generating a sub-Poissonian distribution of photons through signal-dependent 
differential gain can be assessed by imposing the condition that the input range [0.7 No ; 1.4 No ] of number 
of signal photons Ns (0) – covering most of a Poissonian distribution of average No – is reduced to the 

interval of the standard deviation, i.e., [ No (L) − √ No (L); No (L) + √ No (L)] at the output after an interaction 
length L. 

An estimate of the reduced range can be assessed by inserting Eqs. (C2) and (C3) into the equivalent 
of Eqs. (10) and (11) above, with the powers converted into numbers of photons, to obtain the equality  N 
s, j (L) = N s, j (0) G s, j (L) , (with input j = 1 for 0.7 No and j = 2 for 1.4 No ) and, after setting N p >> N s, j we 
obtain for the ratio µ j = N s, j / No   the expression  

 
  ln µ j ( L) = ln µ j (0)  +    [ g s, j (z) − g o (z) ] dz                                    (12a) 

  
  ln µ j ( L) = ln µ j (0)  +  g ‘o (z) ∙ (N s, j − No (z) ) dz                                  (12b) 
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where g ‘o (z) = d g s / d N s  evaluated at Ns = No (z)  so that  g ‘o =  2 γ √ N p ( − 0.5) No (z) − 3/2  from Eqs. 

(C2) and C(3) for maximal gain, and having used the linear relation g s, j (z) ≈ g o (z) + g ‘o (z) ∙ (N s, j − No 

(z) ) , i. e., a truncated power series expansion of g s (N s). The design parameters include the coupling 
coefficient between the waveguides [6], the pump number of photons Np , and the length of interaction L. 
An attempt to reduce ln µ j to a target value close to zero may require more than one amplifying stage.   

As an additional application, the gain coefficient can rotate the state of polarisation of an optical beam 
through differential amplification of the x–polarised and y –polarised components if the optical powers 
are not equal, with the pump being polarised at an angle of π /4 rad relative to the axes.  

For low levels of signal powers, the phase-pulling effect of Eqs. (C4-C6) and Fig.1 brings all signal 
phases towards the optimal value for maximum amplification, thereby reducing phase fluctuations. Thus, 
photons with a broad range of phases have their phases brought together by the phase-pulling effect, 
resulting in a coherent beam of photons. Aa an application, a binary phase-encoded signal {−π/2 ,  π/2 } 
can be converted into an amplitude binary { “1”, “0”} with a phase-sensitive ODC amplifier.   

Another saturation-like mechanism which further increases the gain for weaker signals is the phase 
dependence of the gain coefficient identified in Appendix C. The phase-pulling effect tends to equalise 
the levels of powers between the pump power P p and the signal power P ss , particularly so for an input 
phase difference of  φ p − φ s  = m π (where m = 0,1,2,… an integer). For P p >> P s the relative phase shift 
towards a maximal gain is dominated by the signal’s PPP induced phase of Eq. (C6) which is inversely 
proportional to √ Ps. In this way, a weaker signal will reach the maximum gain condition faster than a 
stronger signal. 

The phase-sensitive ODC device can support only degenerate frequency amplification, i.e., ( ωpump = 
ωsignal) but one ODC will amplify any wavelength of a wavelength division multiplexed signal provided 
a suitable pump frequency comb is available. Non-degenerate frequencies amplification can be delivered 
by EOP waveguides as outlined in the next section.   

 
4.2. EOP converters 

The parametric amplification of a signal whose frequency is different from that of an available pump 
can be implemented with an appropriately designed electro-optic modulator.  The EOP interaction [7] 
provides external control of the PS amplification through the phase of the microwave modulating signal. 

An electro-optic phase-sensitive amplifier (EO-PSA) will consist of an electro-optic waveguide with 
electrodes designed for traveling microwave modulating signals. By adjusting the phases of the 
microwave field and of the optical pump wave, a frequency downshifted input signal can be amplified or 
attenuated [7] as illustrated in Fig. 2.  An optical pump with a narrow spectral bandwidth can amplify 
and filter out a similarly narrow signal bandwidth through the EOP process of frequency translation [7],                  
[27]. The frequency downshifting ω p  – Ω m = ω s would be easy to implement because it generates 
microwave photons, requiring only a limited level of input microwave power. Broadband amplification 
with EOP devices is possible by operating multiple optical pump waves. 

The PS gain coefficient, which decreases as the signal’s power grows – see Eqs. (C2 - C3) of Appendix 
C – will reduce amplitude fluctuations, while the PPP effect will narrow the range of phase variations 
carried by the signal – see Fig. 1.  
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E (ω s) 
 

                      

 

            ω s = ω p − Ω m           ω p             

Fig. 2. Electro-optic parametric 
amplification filtering out a narrow band 
of the signal spectrum through frequency 
downshifting of pump photons (ω p ) by 
a modulating  frequency  Ω m   . 

 

 5. Discussion - Physical aspects of PS gain coefficients  

The conventional method of experimental noise reduction through the interference between a signal 
and its phase-conjugate replica, e.g., [20], [28-29] relies on parametric conversions of photons in χ(2) and 
χ(3)-based materials. These techniques, however, constitutes only a particular case of a broader picture of 
parametric processes. 

The approximated mathematical solution of Eqs. (A1-2) below is inconsistent with the rigorous and 
physically meaningful solution published in 1962 in [23] – and expanded in 2013 in [24] – and which was 
largely overlooked because of its complexities involving elliptic functions. Nevertheless, its physical 
features can be extracted from the interlinked rate equations of motion for the powers and phases of the 
optical waves involved in the parametric processes as presented in [5-7], [14]. As a result, one identifies, 
classically, a phase-dependent gain coefficient and a related phase-pulling effect. The rigorous solution 
rules out simultaneous amplification and attenuation of the signal and idler waves as indicated in Eqs. (A1-
2) of Appendix A. 

Equally, an approximation-free and fully quantum optic analysis of parametric processes– see 
Section 2 above – reveals that the conversion of photons involves a parametric gain which depends on the 
relative phase between the pump waves and signal/idler waves and is inversely proportional to the square 
root of its power, as well as identifying a parametric phase-pulling effect, for any levels of optical powers.    

The parametric interactions also incorporate a phase-pulling effect capable of countering a phase-
mismatch condition and tending to equalize the levels of power among the waves taking part in the 
mixing of photons. Amplitude noise reduction is achievable for any levels of signal power as the gain 
coefficient displays a saturation-like property. The same characteristic is also exhibited by the related PPP 
effect.  

The similarities between OLP and EOP processes, on the one hand, and the three- or four-photon 
mixing interactions, on the other hand, are evident as all these processes belong to the same group of 
physical phenomena whereby the optical fields drive the atomic electrons into oscillation with no 
absorption of energy between resonant energy states.  

The mathematical technique of linearizing – on the basis of assumptions and approximations [30] – 
the parametric nonlinear coupled wave equations brings about loss of physical properties and the 
appearance of physical inconsistencies as pointed out in the Introduction and Appendix A. The 
differential equations derived under the condition of undepleted pump approximation do not include the 
variation of the conversion-related phase, or the possibility of power coupling reversal which is a major 
feature of parametric processes.  
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Possible operations of carrying out phase-sensitive amplification at low levels of optical power and 
over short interaction lengths may benefit from the versatility offered by parametric processes involving 
only two optical waves. Functional operations can be implemented at low levels of pump power and over 
short distances of a few wavelengths for OLP interactions and centimeters for EOP interactions.  

Equally, a combination of OLP and EOP devices will also involve only two interacting optical waves 
with the EOP effect providing direct interfacing between the electrical and optical domains through the 
electro-optic effect of a suitable crystal interleaved with silica waveguides. 

 

6. Conclusions  

A physical analysis of parametric processes reveals a common feature of phase dependent gain 
coefficients accompanied by a phase pulling effect. Phase-sensitive amplification can be achieved at low 
levels of optical power and over short interaction lengths by means of optically linear and electro-optic 
parametric conversions of photons.  With only two optical waves needed for signal processing, e.g., 
amplification, noise reduction, filtering, etc., the EOP–based devices will have the advantage of direct 
external control for different signal and pump frequencies. 

These physical mechanisms can generate sub-Poissonian distributions of photons through a 
saturation-like effect and using only integrated photonic circuits. 

 

Supplementary Materials: No additional material. 

Acknowledgments: No sources of funding.  

Author Contributions: Only one author 

Conflicts of Interest: “The authors declare no conflict of interest."  

Appendix A - The deficiencies of the Bogoliubov-type solutions 

 
The evolution of the operators is given by the following equations of motion for a phase-matched 

nonlinear interaction: 
 

     a s, i (z) =  cosh( go z) a s, i (0) + i e i ϕp r  
 sinh( go z)  a* i, s (0)                              (A1) 

 

     dz
d  a s, i (z) = go [a s, i (0) + i e i ϕpr a* i, s (0)] e go z − go [ a s, i (0) − i e i ϕpr  a* i, s (0) ] e − go z      (A2) 

 
These expressions of the optical field operators and their rates of change – Eq. (A2) – also apply to the 
corresponding classical optical fields [20], [25], [29-30] where the complex amplitudes of the signal and 
idler waves are denoted by as and ai , respectively, with the asterisk indicating complex conjugation and 
z being the longitudinal distance of propagation. The reference phase  φpr  is (the sum of) the pump 
phase(s). The gain coefficient is given by go = γ(2m+1) Ppm for a  small signal and phase-matching conditions, 
with γ and Pp corresponding, respectively, to the nonlinear coefficient and the pump power for χ(2) , the 
second-order susceptibility (m = ½ ), and χ(3) , the third-order susceptibility (m =1). 

The self-coupling term go as (0) of the rate equation Eq. (A2) above, would be generated by an electric 
dipole polarization oscillating at the angular frequency (2) ω pump + ω s  instead of (2) ω pump − ω i   which is 
required for an exchange of photons of ω signal. Such a dipole frequency (2) ω pump + ω s cannot couple 
photons into the signal.  

Classically, for a zero input idler wave, i.e., ai (0) = 0, the signal seems unaffected by the cross-
coupling or interaction term. Equally, quantum optically, the expectation values of Eqs. (A1-2) contain the 
creation operator a* which, in the context of coherent states of light  ∣α > ,  results  in  the complex 
conjugate value α* of the eigenvalue of the annihilation operator. Consequently, the zero-photon state 
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with α = 0 cannot trigger a parametric conversion of photons in Eq. (A2). This will be role of the 
spontaneous emission [14].  

As the same number of stimulated photons is gained, or lost, by both the signal and the idler waves 
through stimulated emission [14 -17], the rate of power change should incorporate the product of all the 
optical powers taking part in the parametric conversion, i.e., 

 
       dz

d Ps, i = γ (2m+1)Pp
m (P s Pi ) 1/2  sin θ (z)                                              (A3) 

 
where P s, i = ∣ A s, i ∣ 2  ,  A  being the corresponding field amplitude,  θ (z)   the relative phase between 
the pump(s) and the signal and idler waves including  the photonic conversion-induced phases [14],  
[23-24].  This Eq. (A3) requires a non-zero input for both the signal and the idler waves in order for the 
conversion of photons to be initiated. The minimum input power will correspond to the spontaneous 
emission which depends on the strength of the electric dipole [14] and is distinct from the vacuum 
fluctuations which are much weaker and independent of the process.  

 

Appendix B - Classical rate equations for phase-dependent gain coefficients and phase-pulling 
effects  

     The process of four photon mixing (FPM) is reformulated within the context of the Poynting theorem 
for the coupled-wave formalism [6-7] for four angular frequencies ω2 + ω 3 =  ω1 + ω4 , to obtain the same 

differential equations as in [14] but with modified coupling coefficients γ(3) , for the powers P, phases φ , 

the relative phase θ , and a power ratio r 1; 4   : 

    
dz
d P1  =  g1 (z) · P1                                                       (B1) 

  g1 = − 2· γ(3) r 1 (z) · sin θ (z)                                                (B2) 

  P     P P P 
1;4 4;13221;4  =r                                                               (B3) 

       dz
d  θ  = 

 
∆β + ΔβNL    +   γ (3) [ r2  +   r3 −  r1  − r4 ] · cos θ (z)                          (B4) 

       θ (z)  =  θ (0) + ∆β · z + φ2   + φ3  − φ1  − φ4                                          (B5) 

   φ1; 4 (L)   =  φ1;4 (0) + ;    +   γ(3) •  ; ( )  ( )                          (B6) 

  γ (3) 
 n 2
    ok=  ∫∫ χ (3) (x, y, z ) f1  f2  f3  f4 dx dy                                             (B7)  

with  ∆β and ∆β NL standing, respectively, for the linear and non-linear (Kerr effect)  mismatch of 
propagation constants.  Additionally,  ko1;4 denotes the free-space propagation constant of ω1;4 and            

f (x, y, z) is the longitudinally varying (along the z-direction) transverse  (x y -plane) field distribution 

with its square  f 2  normalized to a dimensionless unit [6-7]. 

Appendix C – Combined rate equations for OLP and EOP processes  

 The equation of motion for OLP and EOP interactions involve only two optical waves [6-7] and can 
be reformulated jointly, with the index number M= 1 or 2 for χ(1) or electro-optic χ(2) , and corresponding 
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values of index M −1 = 0 or 1, as follows:    

=)z( aPdz
d  g a (M) (z, θb a)  Pa − α Pa                                            (C1) 

g a (M) (z, θb a) = − 2 γ (M) ra (z, M)  sin θb a (z, M)                               (C2) 
 

     

  
 ;

 
)(2

;

1] - [M 2

a;b

b;amM
ba  P

P E
zr =                                                 (C3) 

 θb a (z; M)= [ βb ±(M −1) βm – βa ] ∙ z + φb  ± (M−1) φm  – φa = Δβ∙ z + Δ φ         (C4)                                                    =)( zbadz
d θ Δβ + γ(M) [ rb  − ra ] cos θb a (z, M)                                  (C5) 

 

  φa (z)   =    φa (0) +  γ(M) dsssr
z

MbaMa  cos 
0

),( ),(   θ                                    (C6) 
 

  −= 1)(
 

)( dy dx 
     MM

ab m
f

b
f

a
fok

χ
 n 2

Mγ                                                (C7)   
where a loss factor α is included in Eq.(C2), and the modulating microwave field Em, phase and 

frequency are identified by the subscript m.  Additionally,  ωa = ωb ± (M−1)  Ωm.                                      

       A distinction is made between time-domain quadrature states of light, i.e., cos (ω t) and sin (ω t), 
and space-domain or propagation (longitudinally varying) quadrature states which will exhibit 

maximum or minimum gain for  θb a = ± π /2  or no gain for  θb a =  0 or  ± π, as seen from Eq. (C2). 

     The propagation quadrature states evolve as a result of parametric phase shifts as specified in Eqs. 
(C4-C6). For a phase-matching condition, Δβ = 0, they will tend towards the maximum gain, while for a 
phase mismatch Δβ ≠ 0 they will depend on the interaction length as well. 
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