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Abstract 

Using recent developments in econometrics and computational statistics we consider the estimation 
of the instantaneous rate of asset return process when the underlying Data Generating Mechanism 
(DGM) is an Ornstein-Uhlenbeck process, driven by fractional noise, and sampled at fixed intervals 
of length h. To address the problem we adopt throughout the paper an exact discretization approach. 
This enable us to exploit the fact that a flow sampling scheme arises naturally when observing the 
DGM. For, while the instantaneous rate of return process is unobservable at points in time, its time 
integral over successive observations is observable since it equals the increment of log-prices. Exact 
discretization delivers an ARIMA(1,1,1) model for log-prices with a fractional driving noise. Building 
on the resulting exact discretization formulae and covariance function, a new Markov Chain Monte 
Carlo (MCMC) scheme is proposed and we examine the properties of both the time and frequency 
domain likelihoods / posteriors through Monte Carlo. For the exact discrete model we adopt a general 
sampling interval of length h. This allow us to determine the optimal choice of h independent of the 
sample size. An empirical application using high frequency stock price data is presented showing the 
relevance of aggregation over time issues in modelling asset prices.  
Keywords: Bayesian modeling, long memory/anti-persistence; continuous time modeling; MCMC. 
JEL codes: C11, C22, C58 
*Corresponding author.  
 
1. Introduction 
Continuous time models are gaining wide acceptance in econometrics and finance in view of data 
availability at very high frequencies. Modern finance theory rely heavily on continuous time analysis, 
see for example the influential book by Merton (1990). However, modelling in discrete time may 
induce temporal aggregation problems that occur when observing a flow variable or the timing of 
observations is different from that of the underlying DGM. These issues are largely ignored in applied 
work, however proper accounting for them is important to ensure the correct specification of asset 
price dynamics. The seminal article of Bergstrom (1983) and subsequent work provided a rigorous 
treatment of the estimation problem by adopting an exact discretization procedure and deriving the 
Exact Discrete Model (EDM) for a range of continuous time models. 
In this paper we consider the problem of estimating the instantaneous rate of asset return process 
when sampled at fixed  time intervals of length h using exact discretization techniques. Note that we 
allow for a general, not necessary unit-spacing, sampling interval h. Zhu and Taqqu (2005) noted, in 

the case of a fBm,  that although the rate of convergence of the variance parameter is N , where  
TN
h

= is the number of observations and T is the time span, irrespective of the sampling interval 

the value of optimal spacing depends from the Hurst exponent H. Using Bayesian technics, we are 
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able to determine an optimal h that in general will depend from the values of the parameters and the 
sample size.  
We assume that between successive observations the, unobservable, asset return process obeys an 
Ornstein-Uhlenbeck (OU) process driven by a fractional noise.  A flow sampling scheme allow us to 
express the integral of the realization of an asset return process over successive observations as the 
increment of log-prices. Thus, we are able to show that for a fixed sampling interval of length h, log-
prices are generated according to a fractional type ARIMA (1,1,1) model. The source of the particular 
ARIMA structure is traced back to the temporal aggregation properties of the flow sampling scheme. 
Furthermore, the derived exact discrete model does not contradict a benchmark EMH since in the 
stationary region, 0a < , log prices possess a unit root exhibiting a stochastic trending behaviour.  
Using high frequency stock price data from Athens Stock Exchange (ASE) we evaluate the importance 
of the aggregation over time effect on asset prices. Lo and Wang (1995) as well as Perron and 
Vodounou (2004, p. 207) noted also, in continuous time, the ARIMA structure of log prices. However, 
in their work the ARIMA structure is originated in the reduced form version of the stationary AR(1) 
plus random walk model. In discrete time, Lo and MacKinlay (1999, pp. 79-81) noted the empirical 
relevance of the ARMA(1,1) model for small to medium size log-price increments. Ait-Sahalia, 
Mykland and Zhang (2005) also noted the MA(1) structure of innovations in the presence of 
microstructure noise, and Griffin and Oomen (2008) the ARMA(1,1) dependence structure of high 
frequency returns in tick time and transaction time. 
We model persistence, through the Hurst parameter H, by introducing a correlated fractional driving 
noise in the OU process. Fractional noise is a flexible tool for modelling long term persistence or anti-
persistence in asset price time series. The OU process is mean reverting and its consequence for 
portfolio and consumption decisions has been considered in Wachter (2002) while empirical evidence 
and tests of mean reverting stock returns are stated in Lo and MacKinlay (1999) section 2. Long range 
dependence and anti-persistence are empirically relevant in high frequency data coming from 
financial markets where microstructure noise come into play. Moreover, it has important implications 
both in derivative pricing as well as in testing for possible arbitrage opportunities and departures 
from the Efficient Market Hypothesis (EMH). 
The estimation method, in this work, is based on closed-form solutions for the covariance matrix of 
the instantaneous rate of asset return process. Then, assuming that the instantaneous rate of return is 
a Gaussian fractional process the likelihood can be formulated easily and formal statistical inferences 
via an efficient MCMC scheme are possible. We use recently developed differential geometry 
samplers to cope with the likelihood / posterior and provide Monte Carlo results as well as an 
application to real-world data from the ASE. We examine both the time-domain and spectral-domain 
likelihoods / posteriors and compare their relative performance. Using proper numerical techniques 
we find that the likelihood / posterior is well behaved, autocorrelation of the MCMC samplers is 
mitigated to a great extent and inferences can be obtained in a fraction of time relative to more 
conventional MCMC schemes.  
In the Bayesian literature there have  been many studies which implement Markov Chain Monte 
Carlo (MCMC) sampling schemes to draw from the posterior of the model. Most studies focus on an 
Euler discretization and treat the missing observations on the continuous path as latent variables. 
This overhead is quite important because when the time interval of observations is longer relative to 
the actual spacing of observations, the latent variables are highly autocorrelated and the performance 
of MCMC schemes can deteriorate very quickly.  
The difficulty is that the likelihood function is not available in closed form for most models, and so 
one has to resort to various approximations. Pedersen (1995) and Santa-Clara (1995) (see also Brandt 
and Santa-Clara, 2002) proposed a simulation-based approach, which is based on integrating out 
unobserved states of the process between pairs of observations. See also Gallant (2002). Ait-Sahalia 
(1999, 2002) proposed a method to approximate the transition density in a one-dimensional diffusion 
setting. The MCMC methods have been used by Eraker (2001), Jones (1999), Elerian et al. (2001), and 
Kim et al. (1998). Typically, MCMC methods simulate sample paths across unobserved intermediate 
points between two observations.  
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When the amount of augmentation is large MCMC methods that rely on data augmentation can break 
down. Papaspiliopoulos et al. (2003) find that high correlation between unknown parameters in a 
diffusion coefficient and the missing data results in arbitrarily slow rates of convergence of sampling 
schemes such as the Gibbs sampler proposed in Eraker (2001) and Golightly and Wilkinson (2005). 
See also Golightly and Wilkinson (2008). 
Some attempts have been made to rectify this problem; Roberts and Stramer (2001) transform the 
stochastic differential equation to obtain constant diffusion coefficients so that the dependence 
problem is overcome. Beskos et al. (2006) propose alternative Monte Carlo methods that rely on non-
centered parametrizations of the process. In this paper we show that although the density cannot be 
obtained in closed form the likelihood function can be obtained analytically for the class of continuous 
time autoregressive models with a fractional parameter. Since we rely on analytical results 
computation of the likelihood function is trivial and efficient Monte Carlo methods can be used to 
evaluate it. In addition, although the simple Metropolis-Hastings algorithm can be used, we 
implement more efficient alternatives and show in artificial and real world data that they perform 
well. The analytical methods of the paper in conjunction with Monte Carlo methods of inference can 
be used in a variety of contexts involving stochastic differential equations and can be thought of as 
extremely efficient alternatives to existing methods.  
Tsai and Chan (2005 a, b) consider maximum likelihood estimation of continuous time ARMA (p, q) 
processes driven by fractional Brownian motion while Tsai and Chan (2005 c) obtain the 
autocorrelation properties of aggregates from a CARFIMA model. However, it should be noticed, 
that unlike Tsai and Chan (2005 a, b and c) we base our analysis and empirical application on the 
derived EDM. The EDM is particularly convenient in the current framework, since, in addition to 
using it in the estimation procedures, forms the basis for the Monte Carlo investigation of the 
estimates.   
The paper is organized as follows. Section 2 sets the continuous time DGM and its assumptions. The 
exact discrete model, satisfying the underlying continuous time process, along with its second-order 
properties are stated in section 3. The likelihood functions, in time and spectral domain, are provided 
in section 4. The algorithms implementing Bayesian inference are described in section 5. An empirical 
implementation using high frequency data is discussed in section 6. Section 7 concludes. The 
derivation of the exact discretization formulae is provided in the Appendix.    
2. The data generating mechanism 

To fix notation in what follows, let the instantaneous rate of return be defined by ( )( ) logdr t P t
dt

=

, where ( )P t  is the price of an asset or portfolio at time t.  In the sequel, the DGM is formulated 
assuming that log prices are influenced by the ongoing effects of the continuous time unobserved 
process ( )r t . Therefore, although log prices are observed at points in time, as stock variables, their 
movement between successive observations are unobserved. Using an exact discretization procedure, 
we are able to express log-returns as an integral of the instantaneous rate of return ( )r t , over the 
observational interval. This allows us to examine the implications and the empirical relevance of the 
fact that ( )r t  is observed as a flow variable (for the econometric implications of flow variables in 
macroeconomic modelling, see Bergstrom, 1984).  In order to obtain the exact discrete model we shall 
make use of the following assumption:  
Assumption 1 
The instantaneous rate of return is generated according to the Ornstein-Uhlenbeck type diffusion model 

( ) ( ) ( )dr t ar t dt cdt t dtε= + +      (1) 

under the fixed initial condition 
  ( )0r x= ,        (2) 

where the innovation ( )tε  is a continuous time fractional Gaussian noise that possesses the auto-covariance 

function 

  ( ) 2 2( ) ,HR s c H sε
−=        (3) 
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  ( ) ( )
2

( ) 2sin 2 1 2 2 .
2 2

c H H Hσ π
π

 = − Γ − 
 

 

Note that H is the Hurst parameter taking values on the interval (0,1).  If 
10
2

H< <  (anti-persistence), 

( ) 0c H <  and the spectral density tends to zero as 0ω → . If 
1 1
2

H< <  (long-memory), ( ) 0c H >  

and the spectral density function tends to infinity as 0ω → . Moreover, using a frequency domain 
approach, the fractional Gaussian noise possess the spectral density function: 

  
2

2 1
1( )

2 Hfε
σω

π ω −= .       (4) 

For a definition and properties of the fractional Gaussian noise see Samorodnitsky and Taqqu (1994). 
3. The exact discrete model 
Next, we state the exact discrete model along with its second-order properties. Following the 
discussion in the Introduction we assume that the investigator observes asset prices at fixed equally 
spaced points in time h, 2h, 3h, … over a fixed time interval [ ]0,T .  

Theorem. Define the observed sample ( ) ( )
( )

( )( )
1

log log 1
th

th t h
x r s ds P th P t h

−
= = − − , 1, 2,...,Tt

h
=

, where h is the fixed observational interval. Then under Assumption 1 thx  satisfies the exact discrete model: 

  ( )1
ah

th tht hx e x vh κ−= + + ,      (5) 

where 
  1( )v cK h=         (6) 

  ( ) ( ) ( ) ( )1 20 0

h h

th K r th r dr K r th h r drκ ε ε= − + − −    (7) 

  ( )
1

1 00

1( )
1 !

x as j j
j

K x e ds a x
j

∞ +
=

= =
+                                       (8) 

  ( )
1 1

2 0

1( )
1 !

h as j j j
jx

K x e ds a h x
j

∞ + +
=

 = = − + ,                                (9) 

the auto-covariance ( ) ( )
F
k th t hh E τγ τ κ κ +

 =    and spectral density functions of the error term are given, 

respectively, by   

  ( ) ( ) ( ) ( )1 10 0

h hF
k h K r R h r s K s drdsεγ τ τ= + −                                (10) 

   ( ) ( ) ( )2 20 0

h h
K r R h r s K s drdsε τ+ + −   

   ( ) ( )( ) ( )1 20 0
1

h h
K r R h r s K s drdsε τ+ + + −   

   ( ) ( )( ) ( )2 10 0
1

h h
K r R h r s K s drdsε τ+ − + −  , 

   ( )
22 2 2( )

2
F
k j

j jh K f
h hε

σ π πω ω ω
π

∞

=−∞

 = + + 
 

 ,            (11) 

where 

   ( ) 1 20 0
( ) ( )

h hi s i h i sK e K s ds e e K s dsω ω ωω − − −= +  ,            (12) 

and ( )R sε , ( )fε ω   are stated in (3)-(4). 

The derived exact discrete model, stated in the Theorem, is particularly suitable for observable 
variables that are sampled at different rates since, unlike more conventional discrete-time models, it 
retains its dynamic structure irrespective of the sampling frequency.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 July 2016              doi:10.20944/preprints201607.0004.v1 

 

  

http://dx.doi.org/10.20944/preprints201607.0004.v1


5 of 19 

Remark 

Under stationarity, 0a < , we obtain from equations (8) and (9): 1
1( )

areK r
a
−=  and 2 ( )

ah are eK r
a
−=  

respectively. Then from (12) it follows, after some simple algebraic, manipulations 
( )( )

( )
22

2 2 2

2 1 cos
( ) 1 ah i hh
K e

a
ωω

ω
ω ω

−−
= −

+
, 

where ( )2 21 1 2 cosah i h ah ahe e e hω ω−− = + − . Thus from (11) we deduce the spectral density 

function of the discrete error term: 

( ) ( )( ) ( )( )
2

2

2 1 2 3
2

2 1 cos 1 2 cos
2

1
2 2

F ah ah
k

H Hj

h h e e h

j ja
h h

σω ω ω
π

π πω ω

∞

+ +=−∞

= − + −

×
+ + +

 . 

4. Gaussian likelihood - time and frequency domain methods 
To construct the likelihood function conditional on the initial value 0 0x = , we first express the 
exact discrete model for t=1,...,T/h in system form as 
  Fx kν− =                   (13) 
where 

1 0 . . . 0
1 0 . . 0

0 1 . . .
0 0 . . .
. . . . . 0
0 0 . 0 1

ah

ah

ah

ah

e
e

F
e

e

 
 − 
 −

=  − 
 
 

− 

,                 (14) 

[ ]2 . . . 'h h Tx x x x= , [ ]. . . 'v v v hν =  and 

[ ]2 . . . 'h h Tk k kκ = . 

Next, define the T×T covariance matrix of the innovation vector [ ]'E κκΩ =  and the parameter 
vector θ={a,c,H,σ²}. Then, apart from a constant, minus twice the logarithm of the Gaussian likelihood 
function is expressed by 
  ( ) 1 1log logL x F Fx V tr V xxθ − −′ ′ ′ = Ω + Ω = +   ,             (15) 

where the matrix 
  1 1V F F− −′= Ω                   (16) 
is a function of the parameter vector θ , 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 . . .
0 . . . 2

. . . . . .

. . . . . .

. . . . . .
2 . . . 0

F F F
k k k
F F F
k k k

F F F
k k k

h T h
h T h

T h T h

γ γ γ
γ γ γ

γ γ γ

 −
 − 
 

Ω =  
 
 
 

− −  

              (17) 

and ( )F
k hγ τ , 0,...T hτ = −  are calculated using by (10) using equations. (3) and (8)-(9). 

4.1 Computational procedure to evaluate the likelihood  
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Let the Cholesky factorization be MM ′Ω = , where M  is a lower triangular matrix with positive 
elements iim  along the diagonal. Then the likelihood function takes the form 

  ( )/ 2
1

2logT h
i iii

L z m
=

= + ,                (18) 

where [ ]1 2 /. . . T hz z z z=  is a vector whose elements iz  are evaluated recursively from 

the system of equations 
  Mz k= .                  (19) 
4.2 Whittle likelihood  
Under stationarity, 0a < , the spectral density of the exact discrete model is given by  

( ) ( ) ( )

( )( )

12

2

2 1 2 3
2

1 2 cos

12 1 cos
2 2 2

th

ah ah F
x k

H Hj

f e e h h

h
j ja
h h

ω ω ω

σ ω
π π πω ω

−

∞
+ +=−∞

 = + − 

= −
+ + +

                                    (20) 

where ( )F
kh ω  is the spectral density of the error term thκ . The Whittle likelihood function is given 

by 

  ( ) ( ) ( )
( )log

2 th

th

T
jh

T x jj
h x j

IhL f
T f

ω
θ ω

π ω=−

 
 = +
  

            (21) 

Where 

  
2

j
jh
T
πω = , 

  ( ) ( )12

T
i th

tht

hI x e
T

ωω μ
π

−
=

= − , 

  ( ) 1
1 ahe vhμ

−
= − . 

5. MCMC samples from the posterior 
The likelihood function is ( );θL Y  and ( )p θ  denotes the prior. Our prior has the standard reference 

form: ( ) ( )1
0,1( ) 1p Hσ −∝θ . For the likelihood function we use both the time-domain and spectral-

domain expressions and compare the results both in terms of parameter estimates, posterior 
distributions as well as convergence through the autocorrelation functions produced by the MCMC 
schemes.  
The most significant advantage of our numerical scheme is that it reduces the difficult problem of 
Bayesian inference to sampling from a tri-variate posterior1. To our knowledge, previous treatments 
of the problem typically rely on sampling from high-dimensional posteriors by treating the 
intermediate steps of the diffusion process as latent variables. Although Gibbs sampling can be used 
in these cases to facilitate the computations, these approaches are always prone to convergence 
problems associated with high autocorrelation induced when sampling the latent states in one way 
or another.  
Although a standard Metropolis-Hastings algorithm can be used, due to the high nonlinearity of the 
posterior we use the method of Girolami and Calderhead (2011) to perform Bayesian inference. As 
the authors write “[t]he proposed methodology exploits the Riemannian geometry of the parameter space of 
                                                 
1 The matrix Ω becomes frequently non-invertible numerically. To address this problem we use Tykhonov 
regularization of the matrix. The regularization parameter is chosen so that starting from a value 10-12 the matrix 
becomes invertible numerically. We monitor this constant so that it does not become excessively large. On the 
average the regularization constant is close to 10-5 (relative to the smallest non-zero eigenvalue) for both 
artificial and real data. Draws for which this does not hold are discarded. This never happened in more than 5% 
of all draws. 
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statistical models and thus automatically adapts to the local structure when simulating paths across this 
manifold providing highly efficient convergence and exploration of the target density”.  
Given a kernel posterior distribution the method of Girolami and Calderhead (2011) aims at obtaining 
draws by exploiting the gradient and the Hessian. Roughly speaking, parameters are updated so that 
they visit the area of high posterior probability mass, not unlike standard Newton-Raphson 
numerical optimization techniques. 
Following Girolami and Calderhead (2011) we utilize Metropolis adjusted Langevin and Hamiltonian 
Monte Carlo sampling methods defined on the Riemann manifold, since we are sampling from target 
densities with high dimensions that exhibit strong degrees of correlation.  Consider the Langevin 
diffusion: 

( ) ( )( ) ( )1
2 log ;d t p t dt d t= ∇ +θ θ BY , 

where B  denotes the d-dimensional Brownian motion. The first-order Euler discretization provides 
the following candidate generation mechanism: 

( )* 21
2 log ;o opε ε= + ∇ +θ θ θ zY , 

where ( )~ ,dNz 0 I , and 0ε >  is the integration step size. Since the discretization induces an 

unavoidable error in approximation of the posterior, a Metropolis step is used, where the proposal 
density is  

( ) ( )( )* 2 21
2| log ; ,o o o

dq N pε ε= + ∇θ θ θ θ IY , 

 with acceptance probability ( ) ( ) ( )
( ) ( )

* *
*

*

| |
, min 1,

| |

o
o

o o

p q
a

p q

  
 
  

θ θ θ
θ θ

θ θ θ
Y
Y

.  

The Brownian motion of the Riemann manifold is given by: 

( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )1/ 2 1/ 21 1

1

d

i ij ij j

d t t t t dt t d t
− − −

=

∂    = +      ∂B G θ G θ G θ G θ B
θ

% ,  

for 1,...,i d= . 
The discrete form of the above stochastic differential equations is: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )( )

* 2 1 2 1 11
2

1

2 1 1 1

1

1

log ;

            

                            , .

od
o o o o o

i i i j j
ij

od
o o
ij ij j

o
i i

p

tr t

t

ε ε

ε ε

ε ε

− − −

=

− − −

=

−

 ∂
   = + ∇ − +  ∂  

 ∂    +   ∂  
 +   





G θ
θ θ G θ θ G θ G θ

θ

G θ
G θ G θ G θ z

θ

μ θ G θ z

@

Y

 

The proposal density is ( ) ( )( )* 2 1| ~ , ,o o o
dN ε ε −θ θ μ θ G θ  and the acceptance probability has the 

standard Metropolis form: ( ) ( ) ( )
( ) ( )

* *
*

*

| |
, min 1,

| |

o
o

o o

p q
a

p q

  =  
  

θ θ θ
θ θ

θ θ θ
Y
Y

.  

Both algorithms are started at the maximum likelihood parameter estimates and convergence is 
tested using Geweke’s (1992) diagnostics. Our MCMC implementation of Girolami and Calderhead 
(2011)  uses 120,000 iterations the first 20,000 of which are discarded to mitigate the possible impact 
of start-up effects. Convergence was found to occur during the transient or burn-in phase. For the 
Metropolis-Hastings algorithm convergence was typically more difficult to obtain so we used 500,000 
iterations discarding between 100,000 and 250,000 iterations, depending on the application. Every 
other tenth draw is omitted to approximate marginal posteriors through kernel densities to mitigate 
the impact of autocorrelation induced by MCMC. Posterior moments are obtained using the full set 
of draws along an autocorrelation-robust Newey and West covariance matrix (lags=10). 
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Numerical singularity of covariance matrices typically occurs in the time-domain likelihood. In that 
case, we always used a “sweep inverse” and the results have been checked against Tykhonov 
regularization, see footnote 1. The spectral likelihood has been found much better behaved, which is 
probably responsible for the excellent behavior of the Girolami and Calderhead (2011)  scheme in this 
case. Even with the time-domain likelihood, the Girolami and Calderhead (2011)  MCMC scheme had 
no problems converging relatively fast and provide autocorrelations which were significantly lower 
compared to those of the Metropolis-Hastings update. Our implementation of the Metropolis-
Hastings update relies on using a trivariate Student-t distribution with 5 degrees of freedom. The 
location and scale parameters were set to those obtained through ML estimation. The covariance 
matrix is scaled so that the algorithm provides an acceptance rate between 20% and 30%. The 
Girolami and Calderhead (2011)  scheme was configured to produce acceptance rates in the same 
range by setting ε appropriately after experimentation.  
Table 1 reports total MSE for parameters ,a H andσ  estimated by Whittle and Gaussian likelihood 
methods on the basis of the exact discrete model stated in the Theorem. The results in Table 1 reveal 
that the Whittle likelihood method provides better parameter estimates, in terms of MSE, for both the 
anti-persistent and long memory cases.   

 
Table 1

 
 
5.1 Unknown sampling interval 
As long as h is not too close to zero (to avoid singularity of Ω) the sampling parameter h can be treated 
as unknown. The likelihood function is ( );θL Y  and ( )p θ  denotes the prior, where the parameter 

vector is [ ], , ,a H hσ ′=θ . Our prior has the form: ( ) ( ) ( )1 1
0,1, , 1p a H H hσ σ − −∝ , where ( ) 1p h h−∝ . Other 

choices of the prior are ( ) ( ) ( ),11p h hε∝  and Jeffreys’ prior ( ) ( ) 1/22

| 2

;
| , ,p h a H E

h
σ

∂
∝ −

∂θ
θL

Y
Y

, where 

|E θY  denotes sampling expectation. This can be considered as a reference prior on the sampling 
parameter. The full prior is ( ) ( ) ( ), , | , ,p p a H p h a Hσ σ=θ . 
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Although the derivative can be computed numerically, the sampling expectation cannot. For this 
reason, approximation of Jeffreys’ prior requires a simulation of the DGM for given , ,a Hσ  and a 
given h , where the prior is to be evaluated2.  
An optimal h can be obtained via the log marginal likelihood. Given a model whose likelihood 
function is ( ; )L Yθ for the parameter kRθ ∈ Θ ⊆  and the prior is ( )p θ the posterior distribution is 

( ; ) ( )( | )
( ; ) ( )
L Y pp Y
L Y p d

θ θθ
θ θ θ

Θ

=


 

From this expression we have the identity (known as ``candidate's formula''): 
( ; ) ( )( ) , ,

( ; )
L Y pM Y
p Y
θ θ θ

θ
= ∀ ∈ Θ  

where the marginal likelihood is ( ) ( ; ) ( )M Y L Y p dθ θ θ
Θ

=  . Since this holds for every θ  we can 

choose θ , the posterior mean, and assume that the posterior is nearly normal with mean θ  and 
covariance V  which can be computed from the MCMC draws. Therefore, the log marginal likelihood 
can be computed approximately as: 

1log ( ) log ( ; ) log ( ) log(2 ) log
2 2
KM Y L Y p Vθ θ π+ + +; . 

There is a related work in several papers that investigate the impact of the sampling rate on the 
properties of parameter estimates as well as optimality criteria of sampling schemes. See Zhu and 
Taqqu (2005) that examine the effects of sampling rate in the case of the fBm by utilizing the 
asymptotic covariance matrix of the estimates. Chambers (2004) considers the consistency properties 
of tests in unit root cases in flow data when the time span and/or frequency of observations increases.  
6. Empirical results 
The exact discretization (5) induces an ARIMA(1,1,1) model for log prices driven by fractional noise. 
Therefore, a negative a  results in mean reversion in asset returns and a stochastic trending behavior 
for log prices, a well-known stylized feature of asset prices generated by competitive markets. When 
0<H<0.5 the driving noise is anti-persistent meaning that it reverts too frequently, while for 0.5<H<1 
it exhibits non-periodic long cycles. Econometric implications and empirical evidence of long 
memory/anti-persistence form a vast area in the relevant literature. Evidence for the fractal behavior 
of stock prices are provided for example in Lo and MacKinlay (1999, pp 147-184) and in Mulligan 
(2004). Moreover, Lillo and Farmer (2004) and Bouchaud, Kockelkoren & Potters (2006) investigate 
the fractal structure of market orders using high frequency data.  In this work we compare three 
priors for the ETE (National Bank of Greece) and ATE (Agricultural Bank of Greece) price data, listed 
in the ASE, using M=1,000 simulations of the process. We implement the algorithms using  two high 
frequency data sets. The first data set is obtained setting the sampling interval at 48 minutes and the 
second data set at a denser 5-minute interval. The data are from the period June 2009 to May 2010 
(10:00 am to 17:00 pm) comprising 2,611 observations in the first case and 65,534 observations in the 
second case. The returns are plotted in Figure 1.  

Figure 1 

                                                 
2  The Jeffreys prior is approximated using 1,000 simulations of the data generating process. We opted for this 
choice after conducting experiments with 500, 1,000, and 5,000 simulations in a preliminary investigation for 
a wide range of parameter values. 
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Marginal posterior densities of parameters α and H are provided in Figure 2 for both the time domain 
(straight line) and the spectral domain likelihood functions for ETE (left panel) and ATE (right panel). 

Figure 2 
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The parameter α, reported in Tables 2 and 3,  is always negative but not significantly far from 0. In 
order to check the robustness of the estimates we report empirical results for different values of the 
parameter h in Table 2. Parameter H is concentrated around 0.3, in the anti-persistent region,  for ETE 
and 0.5 for ATE. A Hurst exponent H=0.5 corresponds to an uncorrelated driving noise. The spectral 
domain posteriors seem to be more concentrated around the mean. The effect of changing h for 
parameters α and H are reported in Figure 3 for ETE and Figure 4 for ATE for the case of 48-min 
sampling data set.  
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Figure 3 

 
Figure 4 

 
 

It is apparent that for h=1/14 marginal posteriors become broadly more concentrated around the 
posterior mean, therefore this value is close to an optimal one for our model. This effect is stronger in 
the case of the adjustment parameter α compared to the long memory parameter H. Zhu and Taqqu 
(2005), from a theoretical standpoint, investigate the determination of an optimal sampling interval h 
and its dependence from the parameter values. The Monte Carlo results concerning the existence of 
an optimal sampling deserve further investigation. 
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In Figure 5, we report autocorrelation functions corresponding to the MCMC draws for parameter H 
for the Girolami-Calderhead sampler (blue bars) and a simple Metropolis-Hastings sampler (red 
bars). 

Figure 5 

 
The behavior of the Girolami-Calderhead sampler is better by far as autocorrelations die out more 
rapidly and are practically zero after lag 30, which justified our choice to thin every other 50th draw. 
In Figure 6, we report marginal posteriors of α and H for the denser 5-min spacing data set of ETE 
and ATE from which it can be seen that the spectral domain posteriors behave much better at least 
for parameter H.  

Figure 6 
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Marginal posterior densities of the parameter h for the 48-min sampling data set are reported in 
Figure 7.  

Figure 7 

 
The marginal posteriors are obtained using the Jeffreys prior and the priors A and B that we described 
earlier and plotted are also the Jeffreys prior itself for comparison. The marginal posteriors are not 
very different showing that posterior results about the sampling interval parameter h are not 
excessively sensitive to the choice of the prior. The ETE returns in the time domain show some 
sensitivity, which is not, however, replicated by the spectral domain posterior, so it must be attributed 
to the different, perhaps inferior, behavior of the former. From the spectral domain marginal 
posteriors of h it turns out that the posterior mean is close to 0.07 and between 0.04 and 0.10 with 
high posterior probability mass.  
In figures 8 and 9 we plot the log marginal likelihood for h, considered as a parameter, for the 48-min 
and 5-min data sets respectively.  
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Figure 8 

 
 

Figure 9 
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The results provide an explanation of Figure 3 , since an optimal h for the 48-min sampled data is 
close to 0.07 (≈1/14) while for the 5-min sampled data an optimal h is close to 0.03. In view of the 
actual sampling rate of the original data this is quite reasonable and leads us to believe that the new 
methods perform quite well.  
In Table 4, we report posterior moments from MCMC using conventional discretization methods by 
treating the missing data as parameters to be estimated following the method of Eraker (2001); see 
also Elerian, Chib and Shephard (2001). The reported posterior standard deviations were computed 
using a Newey-West HAC covariance matrix with 10 lags.  
 
     Table 4 

 
 
The autocorrelations even at lag 50 are still quite large, and relative numerical efficiency is quite low. 
Conventional MCMC was run to obtain one million draws which we used to obtain the results in 
Table 4. This indicates the vast improvement in performance of MCMC which can result from exact 
discretization and use of the time-domain likelihood function. Moreover, conventional MCMC is 
reasonably close to the results from time-domain or spectral-domain likelihoods showing that the 
new methods perform quite well. 
 
Discussion 
In this paper, we proposed a methodology for the parametric estimation of the instantaneous rate of 
asset returns process and assessed the empirical implementation using high frequency stock price 
data. The assumed data generating process is a mean reverting Ornstein-Uhlenbeck process with 
fractional noise. The exact discretization delivers an ARIMA(1,1,1) fractional model for log-prices and 
allows us to use closed-form formulae for the covariance matrix which facilitates greatly the 
formulation of a Gaussian likelihood / posterior in the time-domain or the frequency-domain. In 
addition, we derive the exact discrete model using a general non-unit sampling interval h. This permit 
us to optimize h along with the rest of the parameters. We have introduced a new MCMC scheme 
and have examined the properties of both time-domain and frequency-domain likelihoods / 
posteriors through a Monte Carlo application.  The new techniques applied to two datasets from the 
Athens Stock Exchange. Relative to existing MCMC samplers, which use approximate discretization 
and treat the missing observations of the time path as latent variables, we found that our new 
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procedures result in vast improvements in terms of the autocorrelation properties of the MCMC 
scheme and inferences about the Hurst (and other) parameters can be performed reliably and 
efficiently at a fraction of the time relative to more conventional MCMC schemes. The methods 
presented in this work can be extended to more general continuous time ARMA(p,q) stochastic 
processes for the instantaneous rate of return, in which case the resulting exact discretization will 
yield an ARMA(p, p) model for the observed log-price differences or equivalently an ARIMA(p, 1, p) 
representation for log prices.  Moreover, the exact discretization and estimation methods can be 
extended to unequal spacing observational intervals. This is interesting from an applications 
viewpoint when the observations are tick-data.  
 
APPENDIX 
Proof of Theorem. Under Assumption 1 the solution of (1) in the interval ((t-1)h, th) satisfy 
  ( )1

ah
th tht hr e r v ξ−= + + ,               (A-1) 

where ( )thr r th= , 

  
0

h asv c e ds=                  (A-2) 

and 

  ( )
( )

( )
1 0

( )
th ha th s as

th t h
e s ds e th s dsξ ε ε−

−
= = −  .            (A-3) 

To obtain the exact discrete model for the observed h-period log-price returns 
( )1

( )
th

t h
r s ds

−
=  

log ( ) log ( )P th P th h− − , t=1,2,…, T/h, we integrate (A-1) over ((t-1)h, th) to obtain 

  
( ) ( )

( )1

1 2
( ) ( )

th t hah
tht h t h

r s ds e r s ds vh κ
−

− −
= + +  ,            (A-4) 

where thκ  is stated in (7) and 

  1 0
( )

r asK r e ds=                 (A-5) 

  2 ( )
h as

r
K r e ds=                 (A-6) 

The stated formulae (8)-(9) are deduced by (A.5)-(A.6). In view of eq. (7) and the definition  

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
1 20 0

1 20 0

( )
h hF

k

h h

h E K r th r dr K r th h r dr

K s t h s ds K s t h h s ds

γ τ ε ε

ε τ ε τ

 = − + − −  
 × + − + + − −  

 

 
 

we obtain the auto-covariance function (10).  Finally, using the spectral transfer function ( )K ω , eq. 

(12), we deduce the continuous time spectral representation of the error term thκ  

( ) 2( ) ( )F i h
k h e K f dωτ

εγ τ ω ω ω
∞

−∞
=  ,      (A-7) 

from where (11) follows. 
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